Embodied Physics Learning
实体物理学习
基本信息
- 批准号:1348614
- 负责人:
- 金额:$ 81.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-12-15 至 2018-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this EHR Core Research project, focused on the area of STEM learning, is to use cognitive science theories of embodied cognition to enhance student learning in physics. A central hypothesis being investigated is that providing students with direct experience with physics quantities (e.g., feeling the mass distribution in an extended object through balancing techniques designed to locate an object's center of gravity (COG)), as opposed to reading about the concepts in a textbook or using more traditional hands-on activities (e.g., hanging weights from an extended object to visually determine an object's COG), enhances learning. Laboratory experiences where students feel physics quantities may lead to the recruitment of brain areas devoted to sensorimotor processing when students later think and reason about the physics concepts they experienced. When these sensorimotor areas are involved in thinking and reasoning, people's understanding of the concepts in question may improve. In the cognitive science laboratory, experiments 1-4 investigate whether and how direct engagement with physical objects through balancing activities can promote the conceptualization of extended objects as discrete components, thus enhancing students' ability to locate a system's COG. Experiments 5, 6, 8, & 9 move to the physics classroom to explore how sensorimotor experience may relate to understanding the COG topic and ameliorate common misconceptions, and to determine the optimal time (relative to lecture) for sensorimotor experience. Experiment 7 explores the cognitive and neural substrates driving the link between experience and understanding using a functional magnetic resonance imaging (fMRI) paradigm. Overall, this work seeks to uncover how and why certain laboratory experiences are effective, facilitating the design of easy-to-implement guidelines that educators can use in their own courses to enhance student learning.
这一EHR核心研究项目的目标是利用具身认知的认知科学理论来促进学生在物理方面的学习,专注于STEM学习领域。正在研究的一个中心假设是,向学生提供对物理量的直接体验(例如,通过设计用于定位对象重心(COG)的平衡技术来感受扩展对象中的质量分布),而不是阅读教科书中的概念或使用更传统的动手活动(例如,从扩展对象上悬挂重量来直观地确定对象的COG),可以增强学习。当学生以后思考和推理他们所经历的物理概念时,学生感受到物理量的实验室经验可能会导致大脑中专门负责感觉运动处理的区域的招募。当这些感觉运动区参与思考和推理时,人们对相关概念的理解可能会有所改善。在认知科学实验室,实验1-4考察通过平衡活动与物理对象的直接接触是否以及如何促进将扩展对象作为离散组件的概念化,从而提高学生定位系统COG的能力。实验5、6、8和9转移到物理课堂,探索感觉运动体验如何与理解COG主题和改善常见的误解有关,并确定感觉运动体验的最佳时间(相对于讲课)。实验7使用功能磁共振成像(FMRI)范式探索了推动体验和理解之间联系的认知和神经基础。总体而言,这项工作试图揭示某些实验室经验是如何以及为什么是有效的,促进设计易于实施的指导方针,教育工作者可以在他们自己的课程中使用这些指导方针来加强学生的学习。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sian Beilock其他文献
Sian Beilock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sian Beilock', 18)}}的其他基金
FIRE: Applying Embodied Learning to Physics Education
FIRE:将具身学习应用于物理教育
- 批准号:
1042955 - 财政年份:2010
- 资助金额:
$ 81.04万 - 项目类别:
Continuing Grant
CAREER: Women in the Math and Sciences: Counteracting the Impact of Negative Group Stereotypes on Performance
职业:数学和科学领域的女性:抵消负面群体刻板印象对绩效的影响
- 批准号:
0746970 - 财政年份:2008
- 资助金额:
$ 81.04万 - 项目类别:
Continuing Grant
The Causal Mechanisms of Stereotype Threat
刻板印象威胁的因果机制
- 批准号:
0601148 - 财政年份:2005
- 资助金额:
$ 81.04万 - 项目类别:
Standard Grant
The Causal Mechanisms of Stereotype Threat
刻板印象威胁的因果机制
- 批准号:
0516931 - 财政年份:2005
- 资助金额:
$ 81.04万 - 项目类别:
Standard Grant
相似国自然基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Chinese Physics B
- 批准号:11224806
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Science China-Physics, Mechanics & Astronomy
- 批准号:11224804
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Frontiers of Physics 出版资助
- 批准号:11224805
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese physics B
- 批准号:11024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 81.04万 - 项目类别:
Standard Grant
Illuminating patterns and processes of water quality in U.S. rivers using physics-guided deep learning
使用物理引导的深度学习阐明美国河流的水质模式和过程
- 批准号:
2346471 - 财政年份:2024
- 资助金额:
$ 81.04万 - 项目类别:
Continuing Grant
CAREER: Physics-Informed Deep Learning for Understanding Earthquake Slip Complexity
职业:基于物理的深度学习用于理解地震滑动的复杂性
- 批准号:
2339996 - 财政年份:2024
- 资助金额:
$ 81.04万 - 项目类别:
Continuing Grant
CAREER: Intelligent Battery Management with Safe, Efficient, Fast-Adaption Reinforcement Learning and Physics-Inspired Machine Learning: From Cells to Packs
职业:具有安全、高效、快速适应的强化学习和物理启发机器学习的智能电池管理:从电池到电池组
- 批准号:
2340194 - 财政年份:2024
- 资助金额:
$ 81.04万 - 项目类别:
Continuing Grant
CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
- 批准号:
2338555 - 财政年份:2024
- 资助金额:
$ 81.04万 - 项目类别:
Continuing Grant
CAREER: Symmetries and Classical Physics in Machine Learning for Science and Engineering
职业:科学与工程机器学习中的对称性和经典物理学
- 批准号:
2339682 - 财政年份:2024
- 资助金额:
$ 81.04万 - 项目类别:
Continuing Grant
Enhancing the Accuracy and Interpretability of Global Flood Models with AI: Development of a Physics-Guided Deep Learning Model Considering River Network Topology
利用人工智能提高全球洪水模型的准确性和可解释性:考虑河网拓扑的物理引导深度学习模型的开发
- 批准号:
24K17353 - 财政年份:2024
- 资助金额:
$ 81.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Physics-informed Graph Learning for Anomaly Detection in Power Systems
职业:用于电力系统异常检测的物理信息图学习
- 批准号:
2338642 - 财政年份:2024
- 资助金额:
$ 81.04万 - 项目类别:
Continuing Grant
CAREER: Accelerating Scientific Discovery via Deep Learning with Strong Physics Inductive Biases
职业:通过具有强物理归纳偏差的深度学习加速科学发现
- 批准号:
2338909 - 财政年份:2024
- 资助金额:
$ 81.04万 - 项目类别:
Continuing Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
- 批准号:
2311084 - 财政年份:2023
- 资助金额:
$ 81.04万 - 项目类别:
Standard Grant














{{item.name}}会员




