Illuminating patterns and processes of water quality in U.S. rivers using physics-guided deep learning
使用物理引导的深度学习阐明美国河流的水质模式和过程
基本信息
- 批准号:2346471
- 负责人:
- 金额:$ 44.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-03-15 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Water quality problems are fundamental, universal challenges in society. Persistent nutrient pollution has caused eutrophication and harmful algal blooms globally, estimated to cost more than 4 billion dollars annually in the United States alone. Nutrient pollution threatens ecosystems and food production. Soil erosion will continue to grow with the global urban population. The United States has spent more than a trillion dollars to improve water quality since 1972, equivalent to annual spending of $100 per American, making clean water arguably one of the most expensive environmental investments, more than the cost of clean air. Understanding water quality dynamics is essential yet has remained a major challenge, partly due to its complex nature and data scarcity. This project aims to improve understanding of water quality dynamics by developing forecasting tools and advancing knowledge on how and why water quality changes under different conditions and places. The outcomes will help policymakers, water managers, and the broader public to make informed decisions that ensure the sustainability of water resources.Despite tremendous progress and efforts in the past decades, water quality measurements have remained arduous and expensive, leading to inconsistent data coverage. Understanding of water quality dynamics therefore is often limited to individual sites. The project aims to determine the patterns of and processes that regulate concentration-discharge relationships of water quality variables across the United States. The project will focus on common water quality variables, including nitrate, total phosphorus, and turbidity (a proxy for total suspended sediment). The project will test whether spatial patterns of concentration-discharge relationships are driven predominantly by land use (relative to other drivers) that regulates hydrological flow paths and source water biogeochemistry. The hypotheses will be tested using Process-Guided Deep Learning integrating traditional Long Short-Term Memory models with reactive transport models. The integration will address the limitations of data scarcity and the "black box" nature of deep learning models, and advance predictive accuracy. The project will also 1) make the reconstructed data publicly available; 2) share the trained models for prediction in unmonitored time, space and future scenarios; 3) create videos to educate stakeholders on how to use the models; and 4) broaden participation in the field of artificial intelligence/machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
水质问题是社会面临的根本性、普遍性挑战。持续的营养物污染已经在全球范围内造成了富营养化和有害藻类大量繁殖,仅在美国,估计每年的损失就超过40亿美元。营养污染威胁着生态系统和粮食生产。土壤侵蚀将随着全球城市人口的增加而继续增长。自1972年以来,美国已经花费了超过1万亿美元来改善水质,相当于每个美国人每年花费100美元,使清洁水可以说是最昂贵的环境投资之一,超过清洁空气的成本。了解水质动态至关重要,但仍是一项重大挑战,部分原因是其复杂性和数据稀缺。该项目旨在通过开发预测工具和提高对不同条件和地点下水质变化的方式和原因的认识,提高对水质动态的理解。这些成果将帮助决策者、水资源管理者和广大公众做出明智的决策,确保水资源的可持续性。尽管在过去几十年中取得了巨大的进步和努力,但水质测量仍然艰巨而昂贵,导致数据覆盖范围不一致。因此,对水质动态的了解往往局限于个别地点。该项目的目的是确定模式和过程,调节浓度排放关系的水质变量在美国各地。该项目将侧重于常见的水质变量,包括硝酸盐、总磷和浊度(悬浮沉积物总量的代表)。该项目将测试浓度-排放关系的空间格局是否主要由调节水文流动路径和源水生态地球化学的土地利用(相对于其他驱动因素)驱动。这些假设将使用过程引导的深度学习进行测试,将传统的长短期记忆模型与反应性传输模型相结合。该集成将解决数据稀缺的局限性和深度学习模型的“黑匣子”性质,并提高预测准确性。该项目还将:1)公开重建的数据; 2)共享训练好的模型,用于在未监测的时间、空间和未来场景中进行预测; 3)制作视频,教育利益相关者如何使用模型; 4)扩大人工智能领域的参与;该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响进行评估,被认为值得支持审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li Li其他文献
Mononuclear, dinuclear and polymeric cobalt(II) complexes built on 4-aryl-2,6-bis(2′-pyrazinyl)pyridines
基于 4-芳基-2,6-双(2-吡嗪基)吡啶的单核、双核和聚合钴 (II) 配合物
- DOI:
10.1016/j.poly.2017.05.002 - 发表时间:
2017 - 期刊:
- 影响因子:2.6
- 作者:
Li Li;E. Liu;Hang;C. Chan;David R. Manke;J. Golen;Guoqi Zhang - 通讯作者:
Guoqi Zhang
Short-term Wind Power Forecasting Model Based on Stacking Fusion Learning
基于叠加融合学习的短期风电功率预测模型
- DOI:
10.1109/itaic54216.2022.9836510 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Haibo Sun;Li Li;Haonan Wang - 通讯作者:
Haonan Wang
Natural resource abundance, natural resource-oriented industry dependence, and economic growth: Evidence from the provincial level in China
自然资源丰富、自然资源导向型产业依赖与经济增长:来自中国省级的证据
- DOI:
10.1016/j.resconrec.2018.08.012 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Sanmang Wu;Li Li;Shantong Li - 通讯作者:
Shantong Li
Constructing heterostructured Li–Fe–Ni–Mn–O cathodes for lithium-ion batteries: effective improvement of ultrafast lithium storage
构建锂离子电池异质结构Li-Fe-Ni-Mn-O正极:有效提升超快锂存储能力
- DOI:
10.1039/c7cp04092j - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Taolin Zhao;Na Zhou;Xiaoxiao Zhang;Qing Xue;Yuhua Wang;Minli Yang;Li Li;Renjie Chen - 通讯作者:
Renjie Chen
Luminescent properties of Lu2MoO6:Eu3+ red phosphor for solid state lighting
固态照明用Lu2MoO6:Eu3红色荧光粉的发光特性
- DOI:
10.1016/s1003-6326(16)64276-0 - 发表时间:
2016-06 - 期刊:
- 影响因子:4.5
- 作者:
Li Li;Jun Shen;Xianju Zhou;Yu Pan;Wenxuan Chang;Qiwei He;Xiantao Wei - 通讯作者:
Xiantao Wei
Li Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li Li', 18)}}的其他基金
Collaborative Research: From Peaks To Slopes To Communities, Tropical Glacierized Volcanoes As Sentinels of Global Change: Integrated Impacts On Water, Plants and Elemental Cycling
合作研究:从山峰到斜坡到社区,热带冰川火山作为全球变化的哨兵:对水、植物和元素循环的综合影响
- 批准号:
2317851 - 财政年份:2023
- 资助金额:
$ 44.8万 - 项目类别:
Continuing Grant
Collaborative Research: How roots, regolith, rock and climate interact over decades to centuries — the R3-C Frontier
合作研究:根系、风化层、岩石和气候在数十年至数百年中如何相互作用 - R3-C 前沿
- 批准号:
2121621 - 财政年份:2021
- 资助金额:
$ 44.8万 - 项目类别:
Continuing Grant
Developing digital literacies for second/foreign language teachers
培养第二/外语教师的数字素养
- 批准号:
ES/W000024/1 - 财政年份:2021
- 资助金额:
$ 44.8万 - 项目类别:
Research Grant
SitS: Collaborative Research: Soils are signaling shifts in aggregate life-cycles: What does this mean for water, carbon and climate feedbacks in the Anthropocene?
SitS:合作研究:土壤正在发出总体生命周期变化的信号:这对人类世的水、碳和气候反馈意味着什么?
- 批准号:
2034214 - 财政年份:2021
- 资助金额:
$ 44.8万 - 项目类别:
Standard Grant
Collaborative Research - Digging deeper: Do deeper roots enhance deeper water and carbon fluxes and alter the trajectory of chemical weathering in woody-encroached grasslands?
合作研究 - 深入挖掘:更深的根是否会增强更深的水和碳通量并改变木本侵蚀草原的化学风化轨迹?
- 批准号:
1911960 - 财政年份:2019
- 资助金额:
$ 44.8万 - 项目类别:
Standard Grant
Collaborative Research: Combining complex systems tools, process-based modelling and experiments to bridge scales in low temperature geochemistry
协作研究:结合复杂系统工具、基于过程的建模和实验来弥补低温地球化学的规模
- 批准号:
1724440 - 财政年份:2018
- 资助金额:
$ 44.8万 - 项目类别:
Standard Grant
Collaborative Research: Determining the eco-hydrogeologic response of tropical glacierized watersheds to climate change: An integrated data-model approach
合作研究:确定热带冰川流域对气候变化的生态水文地质响应:综合数据模型方法
- 批准号:
1758795 - 财政年份:2018
- 资助金额:
$ 44.8万 - 项目类别:
Continuing Grant
Redefining Surface Area: Understanding Reactive Interfaces in Heterogeneous Porous Media
重新定义表面积:了解异质多孔介质中的反应界面
- 批准号:
1452007 - 财政年份:2015
- 资助金额:
$ 44.8万 - 项目类别:
Standard Grant
NSF Workshop: Expanding the role of Reactive Transport Modeling (RTM) within the Biogeochemical Sciences; Washington, DC
NSF 研讨会:扩大反应输运模型 (RTM) 在生物地球化学科学中的作用;
- 批准号:
1414558 - 财政年份:2014
- 资助金额:
$ 44.8万 - 项目类别:
Standard Grant
Effect of Phase Transitions on Bulk Modulus and Bulk Attenuation: Mantle P-T Laboratory Study at Seismic Frequencies
相变对体积模量和体积衰减的影响:地震频率下的地幔 P-T 实验室研究
- 批准号:
0809397 - 财政年份:2008
- 资助金额:
$ 44.8万 - 项目类别:
Continuing Grant
相似海外基金
From a jack-of-all-trades arise masters of few: uncovering the evolutionary patterns and processes driving multigene family functional diversification
从多才多艺的人中脱颖而出:揭示驱动多基因家族功能多样化的进化模式和过程
- 批准号:
2325341 - 财政年份:2023
- 资助金额:
$ 44.8万 - 项目类别:
Standard Grant
Cardiovascular risk and circadian misalignment in short sleepers- role of extended eating period.
短睡眠者的心血管风险和昼夜节律失调——延长进食时间的作用。
- 批准号:
10733844 - 财政年份:2023
- 资助金额:
$ 44.8万 - 项目类别:
Add Health Parent Study: A Biosocial Resource for the Study of Multigenerational Racial/Ethnic Disparities in Alzheimer's Disease and Alzheimer's Disease-Related Dementias (AD/ADRD)
添加健康父母研究:用于研究阿尔茨海默病和阿尔茨海默病相关痴呆 (AD/ADRD) 中多代人种/民族差异的生物社会资源
- 批准号:
10745617 - 财政年份:2023
- 资助金额:
$ 44.8万 - 项目类别:
CAREER: Phylogenetic scale-dependency of the patterns and processes of quantitative trait evolution
职业:数量性状进化模式和过程的系统发育规模依赖性
- 批准号:
2237613 - 财政年份:2023
- 资助金额:
$ 44.8万 - 项目类别:
Continuing Grant
NSF PRFB FY 2023: Disentangling convergent evolutionary color patterns from underlying ecological processes in the clownfish-sea anemone symbiosis.
NSF PRFB 2023 财年:将趋同进化颜色模式与小丑鱼-海葵共生的潜在生态过程分开。
- 批准号:
2305953 - 财政年份:2023
- 资助金额:
$ 44.8万 - 项目类别:
Fellowship Award
Patterns and processes of primary productivity and trace gas dynamics in subpolar and polar oceans
副极地和极地海洋初级生产力和痕量气体动态的模式和过程
- 批准号:
RGPIN-2022-04455 - 财政年份:2022
- 资助金额:
$ 44.8万 - 项目类别:
Discovery Grants Program - Individual
Global patterns and processes of organismal niche in the marine environment
海洋环境中生物生态位的全球模式和过程
- 批准号:
503540-2017 - 财政年份:2022
- 资助金额:
$ 44.8万 - 项目类别:
Discovery Grants Program - Northern Research Supplement
Community reassembly in changing seascapes: patterns, processes, and consequences
不断变化的海景中的社区重组:模式、过程和后果
- 批准号:
RGPIN-2018-05712 - 财政年份:2022
- 资助金额:
$ 44.8万 - 项目类别:
Discovery Grants Program - Individual
Ecological interactions in high places: patterns, processes and consequences
高处的生态相互作用:模式、过程和后果
- 批准号:
RGPNS-2020-05474 - 财政年份:2022
- 资助金额:
$ 44.8万 - 项目类别:
Discovery Grants Program - Northern Research Supplement
Mate choice, male morphology and mating systems: Patterns and processes
配偶选择、雄性形态和交配系统:模式和过程
- 批准号:
RGPIN-2018-06402 - 财政年份:2022
- 资助金额:
$ 44.8万 - 项目类别:
Discovery Grants Program - Individual