CAREER: Free Surface Mobility and its Role in the Formation of Exceptionally Stable Glasses

职业:自由表面迁移率及其在形成异常稳定的玻璃中的作用

基本信息

  • 批准号:
    1350044
  • 负责人:
  • 金额:
    $ 57.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-03-15 至 2019-02-28
  • 项目状态:
    已结题

项目摘要

Technical SummaryMolecular glasses with high densities and exceptional kinetic stabilities have been recently produced by means of physical vapor deposition (PVD). In these experiments, the substrate temperature was held at a temperature below the glass transition temperature, Tg, where the bulk relaxation dynamics are extremely slow. In order for these PVD glasses to overcome the kinetic barriers preventing bulk glasses from reaching such near-equilibrium states at low temperatures, molecules must have access to enhanced mobility during vapor deposition. It is hypothesized that this enhanced mobility is caused by a layer of increased mobility close to the air interface. With support from the Solid State and Materials Chemistry program in the Division of Materials Research, this hypothesis will be tested by studying the dynamical properties of the surface of organic molecular glasses using a nanoparticle probe technique developed by the PI and others. The proposed improvements to this technique will allow simultaneous studies of the properties of the bulk glass and its free surface, making it an ideal method for investigating the correlation between surface properties and stable glass formation. This technique will be applied on a broad range of organic molecules to investigate whether this phenomena is universal for all glasses, or a chemical effect specific to particular molecular structures. These studies will be important in advancing our fundamental understanding of the glass transition phenomena. Non-Technical Summary: Glasses, out of equilibrium solids with structures that resemble that of equilibrium liquids, are ubiquitous in our daily life, and are widely used in the electronic and medical industries. Despite this, developing new useful glassy materials, or improving the properties of known glassy materials has proven to be difficult due to extremely slow molecular motion within the glass. For example, in order to make high-density glasses via aging, the process by which a glass naturally becomes more dense, one would have to wait a few hundred thousand years. A recent discovery, however, shows that glasses with highly desirable properties, such as increased density and stability, can be produced in a few hours. It is hypothesized that this is caused by the presence of a layer at the air/glass surface of most organic and polymeric glasses that is a few nanometers thick and behaves like a liquid rather than an out of equilibrium solid. Our proposed studies aim at understanding the origins of the liquid-layer and its effect on the structure of glasses. Understating the properties of the liquid-layer can help design and produce materials with improved properties for organic electronic, pharmaceutical, lubrication and coating technologies. Furthermore, we will combine these studies with educational efforts aimed at introducing concepts of glassy polymer dynamics and structure to a wide audience. Polymers are widely used in everyday life. Products such as bullet proof glass, silly putty and tires are examples of materials with similar design concepts, but widely varying properties. We will design experimental modules to highlight the importance of chemical composition, structure and dynamics on the final properties of a polymeric system. These experiments will be presented with adjustable levels of technical detail so that students of all backgrounds can learn from them. The PI will also work closely with institutions at the University of Pennsylvania and science teachers from elementary and high schools in the Philadelphia area to develop, implement, and disseminate these modules. To reach an even larger audience, videos of these modules will be made available online.
技术概述最近通过物理气相沉积(PVD)制备了具有高密度和优异动力学稳定性的分子玻璃。在这些实验中,衬底温度保持在低于玻璃化转变温度Tg的温度,其中体弛豫动力学极其缓慢。 为了使这些PVD玻璃克服阻止块体玻璃在低温下达到这种近平衡状态的动力学障碍,分子必须在气相沉积期间获得增强的迁移率。假设这种增强的移动性是由靠近空中接口的增加的移动性层引起的。在材料研究部门的固态和材料化学计划的支持下,这一假设将通过使用PI和其他人开发的纳米粒子探针技术研究有机分子玻璃表面的动力学特性来进行测试。对该技术的改进将允许同时研究大块玻璃及其自由表面的性质,使其成为研究表面性质和稳定玻璃形成之间的相关性的理想方法。这项技术将应用于广泛的有机分子,以研究这种现象是否对所有玻璃都是普遍的,或者是特定分子结构的化学效应。 这些研究将是重要的,在推进我们的玻璃化转变现象的基本理解。非技术总结:玻璃是一种非平衡固体,其结构类似于平衡液体,在我们的日常生活中无处不在,并广泛用于电子和医疗行业。尽管如此,开发新的有用的玻璃质材料,或改善已知玻璃质材料的性能已被证明是困难的,因为玻璃内的分子运动非常缓慢。例如,为了通过老化制造高密度玻璃,玻璃自然变得更致密的过程,人们必须等待几十万年。然而,最近的一项发现表明,具有高度理想特性的玻璃,如增加的密度和稳定性,可以在几个小时内生产出来。据推测,这是由于在大多数有机和聚合物玻璃的空气/玻璃表面存在一层,该层厚度为几纳米,并且表现得像液体而不是不平衡的固体。我们提出的研究旨在了解液体层的起源及其对玻璃结构的影响。 了解液体层的性质可以帮助设计和生产具有改进性能的材料,用于有机电子,制药,润滑和涂层技术。此外,我们将结合联合收割机这些研究与教育工作,旨在介绍玻璃态聚合物动力学和结构的概念,以广大观众。聚合物广泛应用于日常生活中。 防弹玻璃、橡皮泥和轮胎等产品都是具有类似设计概念但性能差异很大的材料。我们将设计实验模块,以突出化学组成,结构和动力学对聚合物系统的最终性能的重要性。这些实验将与技术细节的可调水平,使所有背景的学生可以从中学习。 PI还将与宾夕法尼亚大学的机构以及费城地区小学和高中的科学教师密切合作,开发,实施和传播这些模块。 为了让更多的人了解这些单元,将在网上提供这些单元的录像。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zahra Fakhraai其他文献

Different Individual Amyloid Fibrils Exhibit Different Beta Sheet Secondary Structures via Near-field Infrared Spectroscopy
  • DOI:
    10.1016/j.bpj.2008.12.355
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Melissa Paulite;Zahra Fakhraai;Nikhil Gunari;Adrienne Tanur;Gilbert C. Walker
  • 通讯作者:
    Gilbert C. Walker

Zahra Fakhraai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zahra Fakhraai', 18)}}的其他基金

Engineering Stable Glass Films Using Molecular Design and Surface-Mediated Equilibration
利用分子设计和表面介导的平衡工程稳定的玻璃薄膜
  • 批准号:
    1628407
  • 财政年份:
    2016
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Standard Grant

相似国自然基金

一次扫描多对比度及free-water DTI技术在功能区脑肿瘤中的研究
  • 批准号:
    JCZRLH202500011
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于碳纳米管技术和转座子开发一种新型的、 marker-free 的植物转基因技术
  • 批准号:
    Z24C160005
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于Lab-free电化学发光平台的ctDNA甲基化分析研究
  • 批准号:
    22374123
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向Cell-Free网络的协同虚拟化与动态传输
  • 批准号:
    62371367
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于制备内源5mc-free基因组的策略鉴定新型DNA修饰并解析其产生机理
  • 批准号:
    32370576
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于定点突变膜受体Cell-free合成生物色谱新方法的PDGFRβ抑制剂筛选和结合位点分析
  • 批准号:
    82273886
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
不同功能基团的电中性Drug-Free纳米颗粒的构建及克服肿瘤耐药的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
利用CRISPR/Cas RNP介导的DNA-free基因编辑衣藻控制登革热传播媒介伊蚊
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
番茄基于DNA-free基因编辑技术的2种类病毒抑制和脱毒的机理研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
低损耗snapback-free RC LIGBT机理与新结构研究
  • 批准号:
    62104030
  • 批准年份:
    2021
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Design and Analysis of Holographic Optical Reconfigurable Intelligent Surface for Free-Space Optical Communications
自由空间光通信全息光学可重构智能表面设计与分析
  • 批准号:
    24K17272
  • 财政年份:
    2024
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERI: Free surface and flexibility effects in partially-submerged bioinspired propulsion
ERI:部分浸没仿生推进中的自由表面和灵活性效应
  • 批准号:
    2347477
  • 财政年份:
    2024
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Standard Grant
CAREER: Particle dynamics at the free surface: waves, turbulence, and microplastics
职业:自由表面的粒子动力学:波浪、湍流和微塑料
  • 批准号:
    2237550
  • 财政年份:
    2023
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Continuing Grant
Advancement in prediction of hydrodynamic characteristics under the free-surface and discharge evaluation by using the turbulence information measured by live camera images
利用实时相机图像测量的湍流信息预测自由表面下的水动力特性和流量评估的进展
  • 批准号:
    23K04043
  • 财政年份:
    2023
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
"Clog-free" microchannel: Elucidation of yeast adsorption mechanism considering surface free energy and pressure
“无堵塞”微通道:考虑表面自由能和压力阐明酵母吸附机制
  • 批准号:
    23K17830
  • 财政年份:
    2023
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Design method of MD cell structure with free curved surface
自由曲面MD细胞结构设计方法
  • 批准号:
    22K03842
  • 财政年份:
    2022
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nanoscale surface coating to enable stable and sendrite-free Zn anode for rechargeable aqueous Zn-ion batteries
纳米级表面涂层可为可充电水性锌离子电池提供稳定且无硅铁矿的锌阳极
  • 批准号:
    549244-2019
  • 财政年份:
    2022
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Alliance Grants
LEAPS MPS: Surface subgroups of outer automorphism group of the free group and dynamics on the boundary
LEAPS MPS:自由群外自同构群的表面子群和边界动力学
  • 批准号:
    2137611
  • 财政年份:
    2022
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Standard Grant
Flow Physics and Wave Energy Absorption of an Oscillating Horizontal Cylinder Near Free Surface
近自由表面振荡水平圆柱体的流动物理和波能吸收
  • 批准号:
    2135354
  • 财政年份:
    2022
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Interagency Agreement
Elucidation of the Mechanism of Activation Temperature Decrease in Oxygen-free Ti Deposited Films with Nitrided Surface
表面氮化无氧钛沉积膜活化温度降低机制的阐明
  • 批准号:
    22K04937
  • 财政年份:
    2022
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了