CAREER: Sustaining Moore's Law Through Introspective Computing: A Comprehensive System For Reliability and Energy Optimization in Modern Computing Devices

职业:通过内省计算维持摩尔定律:现代计算设备可靠性和能源优化的综合系统

基本信息

  • 批准号:
    1350740
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-02-01 至 2019-01-31
  • 项目状态:
    已结题

项目摘要

Whether one is concerned about data-center carbon footprint or battery life of mobile devices, the microprocessor is a dominating consumer of energy. Transistor technology scaling, whose rate is expressed by Moore?s Law, is a regular progression of transistor size reductions down to nanometer dimensions. Historically, this scaling has led to significant improvements in performance and energy efficiency, but more recently scaling has created severe reliability challenges due to difficulties in building components at near-atomic scale. To ensure correctness, chips are operated with static and worst-case safety margins that account for more than 70% of the total energy used by a CPU. This research program specifically addresses that energy wastage by intelligently tightening safety margins and making them dynamic in order to ensure reliable operation with dramatic reductions in expended energy. The success of this research effort will lead to substantial reduction in energy wasted by semiconductor devices for the purpose of improving battery life, environmental impact, and operating costs. It will also encourage the use of continuous self-adjustment and adaptation across an array of computing technologies.In addition to being dependent on the power supply voltage and device temperature, the power and switching delay of a transistor varies substantially with random dopant fluctuation and aging. In current practice, the worst-case combination of factors that affect transistor power consumption and delay are used to size device geometries and define an operating voltage guard band. This ensures reliable operation but leads to unnecessary energy wastage, as the worst-case combinations are unlikely to occur in reality. In this work, machine learning is used to correlate environmental and controllable factors that affect circuit delay and power and dynamically predict the minimum safe guard band. If error-resilient components are used, the guard band can be eliminated entirely. To realize maximum benefit, the system design is optimized across the boundaries of circuit, architectural, and software layers. Combining machine learning, proactive closed-loop control, and a cost/benefit-driven approach to actuator and on-chip sensor allocation, circuit designers and architects are provided with a comprehensive methodology for creating introspective computing devices that dramatically lower energy and adapt automatically to all environmental and workload conditions.
无论人们关心数据中心的碳足迹还是移动设备的电池寿命,微处理器都是主要的能源消耗者。 晶体管技术的缩放比例由摩尔定律表示,是晶体管尺寸减小到纳米尺寸的常规过程。 从历史上看,这种缩放导致了性能和能源效率的显着提高,但最近,由于在近原子尺度上构建组件的困难,缩放带来了严峻的可靠性挑战。 为了确保正确性,芯片在静态和最坏情况安全裕度下运行,这些安全裕度占 CPU 总能耗的 70% 以上。 该研究计划通过智能地收紧安全裕度并使其动态化来专门解决能源浪费问题,以确保可靠运行并大幅减少能源消耗。 这项研究工作的成功将导致半导体设备浪费的能源大幅减少,从而提高电池寿命、环境影响和运营成本。 它还将鼓励在一系列计算技术中使用连续的自我调整和适应。除了依赖于电源电压和器件温度之外,晶体管的功率和开关延迟还随着随机掺杂剂波动和老化而发生很大变化。 在当前实践中,影响晶体管功耗和延迟的最坏情况因素组合用于确定器件几何尺寸并定义工作电压保护带。 这确保了可靠的运行,但会导致不必要的能源浪费,因为最坏情况的组合在现实中不太可能发生。 在这项工作中,机器学习用于将影响电路延迟和功率的环境和可控因素关联起来,并动态预测最小安全保护带。 如果使用抗错误组件,则可以完全消除保护带。 为了实现最大效益,系统设计跨越电路、架构和软件层的边界进行了优化。 将机器学习、主动闭环控制以及成本/效益驱动的执行器和片上传感器分配方法相结合,为电路设计人员和架构师提供了一种全面的方法来创建内省计算设备,这些设备可显着降低能耗并自动适应所有环境和工作负载条件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timothy Miller其他文献

The effect of using a large language model to respond to patient messages.
使用大型语言模型响应患者消息的效果。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shan Chen;Marco Guevara;Shalini Moningi;F. Hoebers;H. Elhalawani;B. H. Kann;F. Chipidza;Jonathan E. Leeman;Hugo J. W. L. Aerts;Timothy Miller;G. K. Savova;Jack Gallifant;L. A. Celi;Raymond H. Mak;Maryam Lustberg;Majid Afshar;Danielle S. Bitterman
  • 通讯作者:
    Danielle S. Bitterman
Domain adaptation in practice: Lessons from a real-world information extraction pipeline
实践中的领域适应:现实世界信息提取管道的经验教训
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Timothy Miller;Egoitz Laparra;Steven Bethard
  • 通讯作者:
    Steven Bethard
Presenting Signs and Symptoms Among Patients with Pompe Disease Enrolled in the Pompe Registry
  • DOI:
    10.1016/j.ymgme.2011.11.097
  • 发表时间:
    2012-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Priya Kishnani;Hernán Amartino;Christopher Lindberg;Amanda Wilson;Joan Keutzer;Timothy Miller
  • 通讯作者:
    Timothy Miller
Child Abduction in Television News Media: A Content Analysis
电视新闻媒体中的儿童绑架:内容分析
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Timothy Miller
  • 通讯作者:
    Timothy Miller
910 How Useful is an MRI-Targeted Biopsy of The Prostate?
910 磁共振成像(MRI)引导的前列腺活检有多有用?
  • DOI:
    10.1016/j.labinv.2024.103143
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Jasmine Wang;Funda Vakar-Lopez;Michael Haffner;Timothy Miller;Maria Tretiakova;Jacob Valk;Lawrence True
  • 通讯作者:
    Lawrence True

Timothy Miller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Timothy Miller', 18)}}的其他基金

Collaborative Research: EPIIC:Increasing our Innovation SCOREs: Symbiotic Collaboration of Regional Ecosystems
合作研究: EPIIC:提高我们的创新分数:区域生态系统的共生协作
  • 批准号:
    2331551
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似海外基金

Attracting, preparing, and sustaining quality teachers in early education
吸引、培养和维持早期教育领域的优质教师
  • 批准号:
    DP240100249
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Discovery Projects
Sustaining chicken-meat production with alternative protein sources
利用替代蛋白质来源维持鸡肉生产
  • 批准号:
    LP220100292
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Linkage Projects
MHDSSP: Self-sustaining processes and edge states in magnetohydrodynamic flows subject to rotation and shear
MHDSSP:受到旋转和剪切作用的磁流体动力流中的自持过程和边缘状态
  • 批准号:
    EP/Y029194/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Fellowship
GreenTower AI: Hyper-Optimized and Self-Sustaining Cell Towers for a Net-Zero UK Telecom
GreenTower AI:英国电信零净值运营的超优化且自我维持的蜂窝塔
  • 批准号:
    10114180
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Collaborative R&D
Sustaining Innovative Tools to Expand Youth-Friendly HIV Self-Testing (S-ITEST)
维持创新工具以扩大青少年友好型艾滋病毒自我检测 (S-ITEST)
  • 批准号:
    10933892
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
TEA Center Renewal: Sustaining Technological Excellence Pursuit in Advanced Manufacturing at Navajo Technical University (S.T.E.P)
TEA 中心更新:纳瓦霍技术大学 (S.T.E.P) 持续追求先进制造技术卓越
  • 批准号:
    2332354
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Creating and Sustaining Noyce Mentors en la Frontera: a HSI Collaborative Capacity Building Grant
在拉弗龙特拉创建和维持诺伊斯导师:HSI 协作能力建设补助金
  • 批准号:
    2345011
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Conference: Culturally Sustaining Approaches to Science and Engineering Classroom Assessments
会议:科学与工程课堂评估的文化可持续方法
  • 批准号:
    2341159
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Beginnings: Creating and Sustaining a Diverse Community of Expertise in Quantum Information Science (EQUIS) Across the Southeastern United States
起点:在美国东南部创建并维持一个多元化的量子信息科学 (EQUIS) 专业社区
  • 批准号:
    2322593
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Cooperative Agreement
CISE-MSI: DP: CNS: AI-powered Diagnosis Augmented by Self-sustaining Sensing System for Intelligent Wastewater Infrastructure Management
CISE-MSI:DP:CNS:通过自我维持传感系统增强人工智能诊断,实现智能废水基础设施管理
  • 批准号:
    2318641
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了