CAREER: Gliding Flight in Snakes: How Wingless Gliders Produce Force, Maintain Stability, and Maneuver
职业:蛇的滑翔飞行:无翼滑翔机如何产生力量、保持稳定性和机动性
基本信息
- 批准号:1351322
- 负责人:
- 金额:$ 75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Flying snakes of the genus Chrysopelea glide like no other animal. Without appendages or membranes to use as lift-generating surfaces, flying snakes flatten from head to tail and glide using the body as a single "wing". In the air, the snakes simultaneously send traveling waves down the body while oscillating in the vertical plane, a flight behavior unlike any other found in the natural or engineering world. This project aims to understand the mechanisms that explain the unique flight abilities of flying snakes. Gliding in live snakes will be recorded to determine their detailed body movements and sectional shapes, including experiments to understand how snakes remain stable and maneuver in the air. Physical and computational models will be used to understand how the snake's shape and continuously changing body posture contribute to the production of aerodynamic forces for weight support and stability. Additional theoretical and physical models will be developed to investigate the requirements for producing snake-like locomotion in the air. The subject of this study is an exciting topic for students and the broader public, and the proposed research will additionally serve as a springboard for new initiatives that integrate physics, biology, and engineering into novel educational programming. Animal groups that fly have been tremendously successful in the biological world, and yet no clear picture has emerged to explain how powered flight has evolved from terrestrial species. In particular, we lack an understanding of how species have transitioned from static gliding to active flapping flight. The undulating movements of the gliding snake, which can be considered as a continuously morphing wing, present characteristics that bridge from passive gliding to powered flight. The flying snake is an active glider, representing the only functional intermediate across the spectrum of gliding to flapping flight. Understanding the mechanics of gliding flight in snakes will therefore lend insight into how one group of species has successfully overcome the biomechanical challenges resulting from shifting forces and rotational torques on the body, a similar problem associated with active flapping flight. Additionally, the aerodynamics of flight at low Reynolds number has received far less attention than the flight dynamics of larger engineered flyers, and this project will elucidate how a craft with symmetrical airfoil shape, but asymmetrical and dynamic body posture, can be physically advantageous. Specifically, the unexpected aerodynamic performance of the snake may originate in its ability to "surf" on its own wake. The determination of muscle activity patterns during perturbation and turning trials will provide the first evidence of the neuromuscular control system required for this type of undulating flyer. In combination, the proposed research to understand how snakes glide will provide contributions across disciplines and will potentially lead to the development of novel micro-air vehicles. Gliding flight in snakes is perhaps one of the most spectacular behaviors in the natural world, and has the potential to inspire new generations of students to take interest in STEM fields. This project taps into the natural appeal of this animal to develop new educational content for teachers and the public. Two major synergistic initiatives will be launched based on flying snake research. The first creates exciting, web-based multi-media material that can be easily adapted and used by teachers across educational levels. The new material will include informative video developed in collaboration with a professional television producer with years of experience creating programs for the National Geographic Channel. The second effort will use research in this project to create a new museum exhibit on flying snakes at the Science Museum of Western Virginia, with assistance from a public school teacher to help translate research into pedagogy. This exhibit will be offered for adaptation at museums worldwide, including the integration into a new exhibit on biomechanics at the Field Museum in Chicago. In addition to the global reach of these efforts, the appeal of flying snakes will be used as a mechanism to recruit underrepresented students into research at the undergraduate and graduate levels through targeted recruiting and visits to local universities with traditionally underserved student populations.
飞蛇属的飞行蛇滑翔不像其他动物。没有附属物或膜作为产生升力的表面,飞蛇从头到尾变平,用身体作为一个单一的“翅膀”滑行。在空气中,蛇在垂直平面上振荡的同时向身体发送行波,这种飞行行为不同于自然界或工程界中的任何其他飞行行为。该项目旨在了解解释飞蛇独特飞行能力的机制。在活蛇中滑行将被记录下来,以确定它们详细的身体运动和截面形状,包括了解蛇如何在空中保持稳定和机动的实验。物理和计算模型将用于了解蛇的形状和不断变化的身体姿势如何有助于产生空气动力来支撑重量和稳定性。将开发更多的理论和物理模型,以研究在空气中产生蛇形运动的要求。这项研究的主题对学生和更广泛的公众来说是一个令人兴奋的话题,拟议的研究还将作为新举措的跳板,将物理学,生物学和工程学整合到新的教育规划中。会飞的动物群体在生物界取得了巨大的成功,但还没有清晰的图片来解释动力飞行是如何从陆地物种进化而来的。特别是,我们缺乏对物种如何从静态滑翔过渡到主动扑翼飞行的理解。滑翔蛇的起伏运动,可以被认为是一个不断变形的翅膀,呈现出从被动滑翔到动力飞行的特征。飞蛇是一种主动滑翔机,代表了滑翔到扑翼飞行的唯一功能中间体。因此,了解蛇的滑翔飞行机制将有助于了解一组物种如何成功克服身体上的转移力和旋转扭矩所带来的生物力学挑战,这与主动扑翼飞行有关。此外,在低雷诺数下飞行的空气动力学受到的关注远远少于大型工程飞行器的飞行动力学,本项目将阐明具有对称翼型形状,但不对称和动态身体姿态的飞行器如何在物理上具有优势。具体来说,蛇的意外的空气动力学性能可能源于它的能力,“冲浪”在自己的尾流。在扰动和转弯试验期间确定肌肉活动模式将为这种类型的起伏飞行器所需的神经肌肉控制系统提供第一个证据。结合起来,拟议的研究,以了解蛇如何滑翔将提供跨学科的贡献,并将有可能导致新的微型飞行器的发展。蛇的滑翔飞行可能是自然界中最壮观的行为之一,并有可能激发新一代学生对STEM领域的兴趣。该项目利用这种动物的自然吸引力,为教师和公众开发新的教育内容。将在飞蛇研究的基础上推出两项重大协同举措。第一个项目创建了令人兴奋的、基于网络的多媒体材料,可以很容易地被各个教育级别的教师改编和使用。新材料将包括与一位拥有多年为国家地理频道制作节目经验的专业电视制片人合作开发的信息视频。第二项工作将利用该项目的研究成果,在西弗吉尼亚州科学博物馆创建一个关于飞蛇的新博物馆展览,并得到一名公立学校教师的协助,帮助将研究成果转化为教学法。这一展览将在世界各地的博物馆进行改编,包括纳入芝加哥菲尔德博物馆的一个新的生物力学展览。除了这些努力的全球影响力,飞蛇的吸引力将被用作一种机制,通过有针对性的招聘和访问传统上服务不足的学生群体的当地大学,招募代表性不足的学生参加本科和研究生一级的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Socha其他文献
John Socha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Socha', 18)}}的其他基金
A New Hypothesis for Cardio-respiratory Mechanics in Insects
昆虫心肺力学的新假说
- 批准号:
1558052 - 财政年份:2016
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
RET in Engineering and Computer Science Site: Biomechanics from molecular to organismal scales
工程和计算机科学领域的 RET 网站:从分子到有机体尺度的生物力学
- 批准号:
1301037 - 财政年份:2014
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
IDBR: Instrument development for three-dimensional fluid flow measurements of freely-flying animals
IDBR:用于自由飞行动物三维流体流量测量的仪器开发
- 批准号:
1152304 - 财政年份:2012
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
EFRI BSBA: Complex microsystem networks inspired by internal insect physiology
EFRI BSBA:受昆虫内部生理学启发的复杂微系统网络
- 批准号:
0938047 - 财政年份:2010
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
相似海外基金
Structural Fundamentals of Gliding Motility
滑翔运动的结构基础
- 批准号:
BB/X006298/1 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Research Grant
Reconstitution and functional analyses of gliding machinery in Mycoplasma using minimal cell
使用最小细胞重建支原体滑动机制并进行功能分析
- 批准号:
22KJ3181 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Grant-in-Aid for JSPS Fellows
NSF Postdoctoral Fellowship in Biology: Uncovering the Genomic and Developmental Basis of Gliding Structure Evolution in Gecko Lizards
NSF 生物学博士后奖学金:揭示壁虎滑动结构进化的基因组和发育基础
- 批准号:
2209090 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Fellowship Award
Molecular mechanisms of gliding motility in Plasmodium merozoites
疟原虫裂殖子滑行运动的分子机制
- 批准号:
22KK0114 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Verification of thermal factors for detachment of gliding microtubules and application to detachment control
滑动微管脱离的热因素验证及其在脱离控制中的应用
- 批准号:
22K18782 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Investigation of gliding motility in Bacteroidetes
拟杆菌门滑动运动的研究
- 批准号:
2605539 - 财政年份:2021
- 资助金额:
$ 75万 - 项目类别:
Studentship
Reconstruction of mycoplasma gliding motility in synthetic bacterium by using whole genome cloning method
全基因组克隆方法重建合成细菌支原体滑行能力
- 批准号:
20K22643 - 财政年份:2020
- 资助金额:
$ 75万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
How to build a gliding mammal: Using natural phenotypic variation to define the molecular regulation of tissue morphogenesis
如何构建滑翔哺乳动物:利用自然表型变异来定义组织形态发生的分子调控
- 批准号:
10517079 - 财政年份:2020
- 资助金额:
$ 75万 - 项目类别:
Control of gliding microtubules using surface roughness structure and its application to nano transportation system
利用表面粗糙结构控制滑动微管及其在纳米运输系统中的应用
- 批准号:
20H02117 - 财政年份:2020
- 资助金额:
$ 75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How to build a gliding mammal: Using natural phenotypic variation to define the molecular regulation of tissue morphogenesis
如何构建滑翔哺乳动物:利用自然表型变异来定义组织形态发生的分子调控
- 批准号:
10065858 - 财政年份:2020
- 资助金额:
$ 75万 - 项目类别: