CAREER: Global Quantum Modeling of Topological Nanosystems for Energy-Efficient Devices.
职业:节能设备拓扑纳米系统的全局量子建模。
基本信息
- 批准号:1351871
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The majority of information processing is done using Complementary Metal Oxide Semiconductor (CMOS), an architecture based on a series of interconnected Metal Oxide Semiconductor Field Effect Transistors (MOSFET). The MOSFET is a very simple semiconductor device in which an applied electric field controls electrical current flow between two electrical contacts allowing the definition of "on" states with current flowing and "off" states with no current flow. Using these characteristics of "on" and "off" states, it is possible to then define bits "1" and "0" which form the basis of digital information processing. Our society is becoming increasingly dependent on digital information processing systems used in, e.g., computers, smart phones, and televisions for every aspect of our personal and professional lives. The related societal demand for increased performance from ever-smaller electronic devices is driving the miniaturization of the MOSFET. However, future miniaturization of the MOSFET is predicted to result in not only diminishing returns in device performance, but also in devices that consume too much power. Thus, a grand challenge is to design and implement novel information processing devices that bypass the limitations of the MOSFET. The solution to this problem will require an orthogonal approach that utilizes new materials and new approaches to solve this power consumption problem. In the past several years, topological systems have been the focus of intense theoretical and experimental study. Topological states are unique in the sense that their existence is protected by an underlying symmetry present in the system, so the states cannot be removed unless the symmetry is broken. Topological materials have the potential to make a disruptive change to information processing due to their unique physical properties. Nonetheless, a key aspect missing from topological research is a path to move from basic physics to engineering real-world devices. This work will bridge the fundamental physics and engineering world to develop tools that serve to address the many open questions remain about the behavior of topological materials at the nanoscale, the answers to which, will ultimately dictate their role in future nanosystems that consume less power with minimal sacrifice of performance.This CAREER award sets forth a series of tasks designed to take advantage of the exciting opportunity to study topological nanosystems under a variety of different operating conditions with the stated goal of understanding their applicability in future information processing systems. In particular, the award aims to understand the light-matter interactions and high-frequency responses in topological nanosystems. Numerical results will be attained by, for the first time, coupling the time-dependent versions of the Kadanoff-Baym quantum transport equations to the full solution to Maxwell's electromagnetic curl equations in three spatial dimensions. We will use this quantum global modeling tool to gain a fundamental understanding of how Maxwell's equations are modified in 3D topological materials under electromagnetic illumination. Furthermore, we will apply this knowledge of fundamental responses to understand the role topological materials may play in future nanosystems. Additionally, in conjunction with the numerical approach, compact models for each of the devices considered will be derived based on the results of the detailed numerical simulations to provide a strong bridge between the physical principles of the topological nanodevices and simple models useful to researchers seeking to design circuit architectures utilizing such devices. Such compact models will be derived using a variety of analytical techniques ranging from basic field theory to semi-classical magnetism. The results of this work will not only increase theoretical understanding of topological materials and their ultimate applicability in future information processing systems, but will also help in the design and interpretation of experiments and circuits.
大多数信息处理是使用互补金属氧化物半导体(CMOS)完成的,CMOS是一种基于一系列互连金属氧化物半导体场效应晶体管(MOSFET)的架构。MOSFET是一种非常简单的半导体器件,其中施加的电场控制两个电触点之间的电流流动,从而允许定义有电流流动的“开”状态和没有电流流动的“关”状态。利用这些“开”和“关”状态的特性,就可以定义位“1”和“0”,它们构成数字信息处理的基础。我们的社会越来越依赖于数字信息处理系统,例如,电脑,智能手机和电视,用于我们个人和职业生活的各个方面。与此相关的社会需求是,电子器件越来越小,性能也越来越高,这推动了MOSFET的小型化。然而,预计未来MOSFET的小型化不仅会导致器件性能的回报减少,而且还会导致器件消耗太多功率。因此,一个巨大的挑战是设计和实现绕过MOSFET限制的新型信息处理设备。这个问题的解决方案将需要一个正交的方法,利用新的材料和新的方法来解决这个功耗问题。在过去的几年里,拓扑系统一直是理论和实验研究的热点。拓扑状态是唯一的,因为它们的存在受到系统中存在的潜在对称性的保护,所以除非对称性被破坏,否则状态不能被移除。拓扑材料由于其独特的物理性质,有可能对信息处理产生颠覆性的变化。尽管如此,拓扑研究中缺少的一个关键方面是从基础物理学转向工程现实世界设备的路径。这项工作将在基础物理学和工程世界之间架起一座桥梁,以开发工具来解决有关纳米级拓扑材料行为的许多悬而未决的问题,这些问题的答案是,将最终决定他们在未来的纳米系统中的作用,这些纳米系统消耗更少的功率,性能牺牲最小。这个CAREER奖项提出了一系列旨在利用令人兴奋的机会学习的任务。拓扑纳米系统在各种不同的操作条件下与理解其在未来的信息处理系统的适用性的既定目标。特别是,该奖项旨在了解拓扑纳米系统中的光-物质相互作用和高频响应。数值结果将获得的,第一次,耦合的时间依赖版本的Kadanoff-Baym量子输运方程的完整解决方案,麦克斯韦的电磁旋度方程在三维空间。我们将使用这个量子全局建模工具,以获得一个基本的理解如何麦克斯韦方程组在电磁照明下的三维拓扑材料修改。此外,我们将运用这些基本反应的知识来理解拓扑材料在未来纳米系统中可能发挥的作用。此外,结合数值方法,将根据详细数值模拟的结果导出所考虑的每个器件的紧凑模型,以在拓扑纳米器件的物理原理和简单模型之间提供强有力的桥梁,这对寻求利用此类器件设计电路架构的研究人员有用。这种紧凑的模型将使用各种分析技术,从基本场论到半经典磁学。这项工作的结果不仅将增加对拓扑材料的理论理解及其在未来信息处理系统中的最终适用性,而且还将有助于实验和电路的设计和解释。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Gilbert其他文献
Minimum material vault designs generated via adaptive layout optimization
通过自适应布局优化生成的最小材料金库设计
- DOI:
10.1016/j.engstruct.2025.120213 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:6.400
- 作者:
Linwei He;Helen E. Fairclough;Matthew Gilbert;Andrew Liew;Karol Bołbotowski - 通讯作者:
Karol Bołbotowski
P30-033-23 Effect of Short-Term Full-Fat Yogurt Consumption on Circulating Inflammatory Biomarkers in Individuals With Prediabetes
- DOI:
10.1016/j.cdnut.2023.101491 - 发表时间:
2023-07-01 - 期刊:
- 影响因子:
- 作者:
Victoria Taormina;Simonne Eisenhardt;Derek Devine;Matthew Gilbert;C. Lawrence Kien;Matthew Poynter;Jana Kraft - 通讯作者:
Jana Kraft
Comparison of ground-structure and continuum based topology optimization methods for strut-and-tie model generation
基于杆系模型生成的基于地面结构和连续体的拓扑优化方法的比较
- DOI:
10.1016/j.engstruct.2024.118498 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:6.400
- 作者:
Yi Xia;Andrew Liew;Hongfei Wu;Matthijs Langelaar;Max A.N. Hendriks;Yuanlong Yang;Meisam Takalloozadeh;Matthew Gilbert - 通讯作者:
Matthew Gilbert
EFFECT OF LIRAGLUTIDE ON CARDIOVASCULAR OUTCOMES IN ELDERLY PATIENTS IN THE LEADER TRIAL
- DOI:
10.1016/s0735-1097(18)32259-9 - 发表时间:
2018-03-10 - 期刊:
- 影响因子:
- 作者:
Matthew Gilbert;Stephen Bain;Edward Franek;Esteban Jodar-Gimeno;Michael Nauck;Richard Pratley;Rosângela Réa;José Saraiva;Søren Rasmussen;Karen Tornøe;Bernt Johan von Scholten;John B. Buse - 通讯作者:
John B. Buse
Automatic yield-line analysis of out-of-plane loaded masonry cladding panels
- DOI:
10.1016/j.compstruc.2024.107563 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Nicola Grillanda;Linwei He;Matthew Gilbert;Colin C. Smith - 通讯作者:
Colin C. Smith
Matthew Gilbert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Gilbert', 18)}}的其他基金
Exploiting the resilience of masonry arch bridge infrastructure: a 3D multi-level modelling framework
充分利用砖石拱桥基础设施的弹性:3D 多层建模框架
- 批准号:
EP/T001305/1 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Computational Design Optimization of Large-Scale Building Structures: Methods, Benchmarking & Applications
大型建筑结构的计算设计优化:方法、基准测试
- 批准号:
EP/N023471/1 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Ultimate and permissible limit state behaviour of soil-filled masonry arch bridges
填土砌体拱桥的极限状态和许用极限状态行为
- 批准号:
EP/I014489/1 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Research Grant
相似国自然基金
Identification and quantification of primary phytoplankton functional types in the global oceans from hyperspectral ocean color remote sensing
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
磁层亚暴触发过程的全球(global)MHD-Hall数值模拟
- 批准号:40536030
- 批准年份:2005
- 资助金额:120.0 万元
- 项目类别:重点项目
相似海外基金
Practical Free-space Time-Bin Interferometer for Global Quantum Networks
全球量子网络实用自由空间时元干涉仪
- 批准号:
535082-2019 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Collaborative Research: AccelNet: Global Quantum Leap
合作研究:AccelNet:全球量子飞跃
- 批准号:
2020128 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: AccelNet: Global Quantum Leap
合作研究:AccelNet:全球量子飞跃
- 批准号:
2020184 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Practical Free-space Time-Bin Interferometer for Global Quantum Networks
全球量子网络实用自由空间时元干涉仪
- 批准号:
535082-2019 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Collaborative Research: AccelNet: Global Quantum Leap
合作研究:AccelNet:全球量子飞跃
- 批准号:
2020174 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: AccelNet: Global Quantum Leap
合作研究:AccelNet:全球量子飞跃
- 批准号:
2020131 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
From Quantum Entanglement to Tensor Decomposition by Global Optimization
从量子纠缠到全局优化的张量分解
- 批准号:
1912816 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Practical Free-space Time-Bin Interferometer for Global Quantum Networks
全球量子网络实用自由空间时元干涉仪
- 批准号:
535082-2019 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
3QN: Towards A New UK Industry for Novel Quantum Receivers in Nascent Satellite QKD Global Markets
3QN:在新兴卫星 QKD 全球市场中迈向新型量子接收器的英国新产业
- 批准号:
104616 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Collaborative R&D
Quantum Chemistry as a Tool for Addressing Global Energy Needs and Related Environmental Challenges
量子化学作为解决全球能源需求和相关环境挑战的工具
- 批准号:
249992-2012 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual