CAREER: Nonnegative Polynomials, Sums of Squares and Real Symmetric Tensor Decompositions

职业:非负多项式、平方和和实对称张量分解

基本信息

  • 批准号:
    1352073
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-05-15 至 2020-04-30
  • 项目状态:
    已结题

项目摘要

This project investigates links between optimization problems arising in applications and the classical mathematical area of real algebraic geometry. Nonnegative polynomials and sums of squares are the key objects linking optimization and algebraic geometry. The PI will carry out research that sheds light on the computational quality of sums-of-squares methods while building new connections with algebraic geometry. Such connections between mathematics, engineering, and natural sciences enrich mathematics by bringing new types of questions, new perspectives, and new directions of research. The PI will also organize two summer workshops for graduate students centered around student presentations on applications of algebraic geometry. The participating students will be exposed during their graduate studies to perspectives from several different scientific fields, while learning from their own peers.The PI will investigate the connection between nonnegative polynomials and sums of squares in all of its aspects: algebraic, algorithmic, analytical. The PI will also study the closely related topic of real symmetric tensor decompositions. Understanding nonnegativity and its relation with sums of squares is one of the basic challenges of real algebraic geometry. Sums of squares methods have applications in diverse areas such as control and optimization, robotics, and complexity theory. Nonnegativity and sums of squares also have intrinsic connections to classical topics in algebraic geometry. The fundamental research that PI will carry out will lead to furthering these connections, while also improving the understanding of the computational quality of sums of squares algorithms. The PI will also research fundamental geometric aspects of real symmetric tensor decomposition, which are not nearly as well understood as for complex tensors.
本计画探讨最佳化问题在应用与真实的代数几何的经典数学领域之间的连结。非负多项式与平方和是联系最优化与代数几何的关键问题。PI将开展研究,揭示平方和方法的计算质量,同时与代数几何建立新的联系。数学、工程和自然科学之间的这种联系通过带来新类型的问题、新的视角和新的研究方向来丰富数学。PI还将为研究生组织两个夏季研讨会,围绕代数几何应用的学生演讲。参与的学生将在研究生学习期间接触到来自几个不同科学领域的观点,同时向自己的同龄人学习。PI将研究非负多项式和平方和之间的联系,包括代数,算法,分析等各个方面。PI还将研究与之密切相关的真实的对称张量分解。理解非负性及其与平方和的关系是真实的代数几何的基本挑战之一。平方和方法在控制和优化、机器人和复杂性理论等不同领域都有应用。非负性和平方和也与代数几何中的经典主题有着内在的联系。PI将开展的基础研究将进一步促进这些联系,同时也提高了对平方和算法计算质量的理解。PI还将研究真实的对称张量分解的基本几何方面,这些方面的理解不如复杂的张量。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Typical ranks in symmetric matrix completion
对称矩阵补全的典型等级
  • DOI:
    10.1016/j.jpaa.2020.106603
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Bernstein, Daniel Irving;Blekherman, Grigoriy;Lee, Kisun
  • 通讯作者:
    Lee, Kisun
Quantum entanglement, symmetric nonnegative quadratic polynomials and moment problems
  • DOI:
    10.1007/s10107-020-01596-w
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Grigoriy Blekherman;Bharath Hebbe Madhusudhana
  • 通讯作者:
    Grigoriy Blekherman;Bharath Hebbe Madhusudhana
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Grigoriy Blekherman其他文献

Geometry of Real Polynomials, Convexity and Optimization
实多项式的几何、凸性和最优化
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Grigoriy Blekherman;D. Plaumann
  • 通讯作者:
    D. Plaumann
Gait design for limbless obstacle aided locomotion using geometric mechanics
利用几何力学进行无肢障碍辅助运动的步态设计
  • DOI:
    10.48550/arxiv.2302.06561
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Baxi Chong;Tianyu Wang;Daniel Irvine;Velin Kojouharov;Bo Lin;H. Choset;D. Goldman;Grigoriy Blekherman
  • 通讯作者:
    Grigoriy Blekherman
Lectures on Nonnegative Polynomials and Sums of Squares
非负多项式和平方和讲座
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Grigoriy Blekherman;J. Wesner
  • 通讯作者:
    J. Wesner
Symmetric Non-Negative Forms and Sums of Squares
对称非负形式和平方和
  • DOI:
    10.1007/s00454-020-00208-w
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Grigoriy Blekherman;C. Riener
  • 通讯作者:
    C. Riener
Convexity Properties of the Cone of Nonnegative Polynomials
  • DOI:
    10.1007/s00454-004-1090-x
  • 发表时间:
    2004-06-04
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Grigoriy Blekherman
  • 通讯作者:
    Grigoriy Blekherman

Grigoriy Blekherman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Grigoriy Blekherman', 18)}}的其他基金

Sums of Squares: From Algebraic Geometry to Extremal Combinatorics and Quantum Entanglement
平方和:从代数几何到极值组合和量子纠缠
  • 批准号:
    1901950
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Ordered Algebraic Structures and Related Topics
有序代数结构及相关主题
  • 批准号:
    1546706
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
AG15: SIAM Conference on Applied Algebraic Geometry
AG15:SIAM​​ 应用代数几何会议
  • 批准号:
    1522597
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

Extensions of the Nonnegative Matrix Factorization Algorithm with Applications to Large-Scale Data Sets
非负矩阵分解算法的扩展及其在大规模数据集上的应用
  • 批准号:
    547245-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Nonnegative and Combinatorial Matrix Theory
非负和组合矩阵理论
  • 批准号:
    RGPIN-2019-05408
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Extensions of the Nonnegative Matrix Factorization Algorithm with Applications to Large-Scale Data Sets
非负矩阵分解算法的扩展及其在大规模数据集上的应用
  • 批准号:
    547245-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Nonnegative and Combinatorial Matrix Theory
非负和组合矩阵理论
  • 批准号:
    RGPIN-2019-05408
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Nonnegative and Combinatorial Matrix Theory
非负和组合矩阵理论
  • 批准号:
    RGPIN-2019-05408
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Extensions of the Nonnegative Matrix Factorization Algorithm with Applications to Large-Scale Data Sets
非负矩阵分解算法的扩展及其在大规模数据集上的应用
  • 批准号:
    547245-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Nonnegative and Combinatorial Matrix Theory
非负和组合矩阵理论
  • 批准号:
    RGPIN-2019-05408
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Theory and Applications of Nonnegative Matrix Factorization
非负矩阵分解的理论与应用
  • 批准号:
    341718-2013
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Nonparametric inference for nonnegative data using asymmetric kernel/Bernstein polynomial approximation and its development
使用非对称核/伯恩斯坦多项式逼近的非负数据非参数推理及其发展
  • 批准号:
    17K00041
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theory and Applications of Nonnegative Matrix Factorization
非负矩阵分解的理论与应用
  • 批准号:
    341718-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了