Sums of Squares: From Algebraic Geometry to Extremal Combinatorics and Quantum Entanglement

平方和:从代数几何到极值组合和量子纠缠

基本信息

  • 批准号:
    1901950
  • 负责人:
  • 金额:
    $ 17.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

This project is in the area of applied algebraic geometry, and lies at the intersection of several different areas: algebraic geometry (real and complex), combinatorics (graph density inequalities) and theoretical physics (quantum entanglement). The thread linking these areas together is sum of squares approximation to nonnegative polynomials, which additionally has extensive applications in optimization and theoretical computer science. The study of nonnegativity and its relation with sums of squares is one of the basic challenges of real algebraic geometry, yet there is an emerging tight connection of these questions with algebraic geometry over complex numbers. The PI and students supported by the grant will investigate the computational power of the sums of squares method, while pursuing applications in theoretical physics, combinatorics and optimization, and connections with complex algebraic geometry. Connections between mathematics, engineering and natural sciences enrich all sides by bringing new types of questions and directions of research. This work is firmly aligned with Quantum Leap, one of the NSF's 10 Big Ideas.The study of nonnegativity and its relation with sums of squares is one of the basic challenges of real algebraic geometry. Sums of squares methods found applications in many diverse areas, such as optimization, physics and computer science. Convex duality connects nonnegative polynomials to truncated moment problems of real analysis. Quantum entanglement detection can be stated as a symmetric truncated moment problem on a semialgebaric set in some cases. Within extremal combinatorics the sum of squares approach was used to prove graph density inequalities, which address so-called Turan problems. A natural approach, generalizing questions of global nonnegativity, is to consider sums of squares and nonnegative forms on a real projective variety. There is an emerging understanding that sums of squares questions are intimately related to classically studied properties, such as the minimal free resolution of the coordinate ring of the variety. The PI and students supported by the grant will investigate several directions for further research: connections between the study of sums of squares on a variety and the properties of its free resolution, degree bounds for rational sums of squares representations on real projective varieties, limitations of sums of squares method in extremal combinatorics, using non-sum-of-squares certificates of nonnegativity in proving graph density inequalities, and effects of symmetry on sums of squares relaxations of nonnegativity with applications to quantum entanglement detection.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目是在应用代数几何领域,并在几个不同的领域的交叉点:代数几何(真实的和复杂的),组合(图形密度不等式)和理论物理(量子纠缠)。将这些领域连接在一起的线索是非负多项式的平方和近似,它在优化和理论计算机科学中也有广泛的应用。研究非负性及其与平方和的关系是真实的代数几何的基本挑战之一,然而这些问题与复数上的代数几何有着紧密的联系。PI和由补助金支持的学生将调查平方和方法的计算能力,同时追求在理论物理,组合数学和优化,以及与复杂代数几何的连接中的应用。数学,工程和自然科学之间的联系通过带来新类型的问题和研究方向来丰富各个方面。这项工作与美国国家科学基金会的10大思想之一量子跳跃紧密相连。非负性及其与平方和的关系的研究是真实的代数几何的基本挑战之一。平方和方法在许多不同的领域,如优化,物理和计算机科学中找到应用。凸对偶将非负多项式与真实的分析的截断矩问题联系起来。量子纠缠的检测在某些情况下可以描述为半代数集上的对称截断矩问题。在极值组合学中,平方和方法被用来证明图密度不等式,解决所谓的图兰问题。一个自然的方法,推广问题的整体非负性,是考虑平方和和非负形式的真实的射影簇。有一个新兴的理解,平方和问题是密切相关的经典研究的性质,如最小的自由决议的坐标环的品种。PI和资助的学生将调查进一步研究的几个方向:簇上平方和的研究与其自由分解性质之间的联系,真实的射影簇上有理平方和表示的度界,极值组合学中平方和方法的局限性,在证明图密度不等式中使用非负性的非平方和证明,以及对称性对非负性平方和弛豫的影响及其在量子纠缠探测中的应用。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Linear Principal Minor Polynomials: Hyperbolic Determinantal Inequalities and Spectral Containment
  • DOI:
    10.1093/imrn/rnac291
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Grigoriy Blekherman;Mario Kummer;Raman Sanyal;Kevin Shu;Shengding Sun
  • 通讯作者:
    Grigoriy Blekherman;Mario Kummer;Raman Sanyal;Kevin Shu;Shengding Sun
Bounds on regularity of quadratic monomial ideals
二次单项式理想正则性的界
  • DOI:
    10.1016/j.jcta.2020.105296
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Blekherman, Grigoriy;Jung, Jaewoo
  • 通讯作者:
    Jung, Jaewoo
Typical ranks in symmetric matrix completion
对称矩阵补全的典型等级
  • DOI:
    10.1016/j.jpaa.2020.106603
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Bernstein, Daniel Irving;Blekherman, Grigoriy;Lee, Kisun
  • 通讯作者:
    Lee, Kisun
Sums of Squares: A Real Projective Story
平方和:一个真实的投影故事
Sparse PSD approximation of the PSD cone
PSD 锥体的稀疏 PSD 近似
  • DOI:
    10.1007/s10107-020-01578-y
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Blekherman, Grigoriy;Dey, Santanu S.;Molinaro, Marco;Sun, Shengding
  • 通讯作者:
    Sun, Shengding
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Grigoriy Blekherman其他文献

Geometry of Real Polynomials, Convexity and Optimization
实多项式的几何、凸性和最优化
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Grigoriy Blekherman;D. Plaumann
  • 通讯作者:
    D. Plaumann
Gait design for limbless obstacle aided locomotion using geometric mechanics
利用几何力学进行无肢障碍辅助运动的步态设计
  • DOI:
    10.48550/arxiv.2302.06561
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Baxi Chong;Tianyu Wang;Daniel Irvine;Velin Kojouharov;Bo Lin;H. Choset;D. Goldman;Grigoriy Blekherman
  • 通讯作者:
    Grigoriy Blekherman
Lectures on Nonnegative Polynomials and Sums of Squares
非负多项式和平方和讲座
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Grigoriy Blekherman;J. Wesner
  • 通讯作者:
    J. Wesner
Symmetric Non-Negative Forms and Sums of Squares
对称非负形式和平方和
  • DOI:
    10.1007/s00454-020-00208-w
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Grigoriy Blekherman;C. Riener
  • 通讯作者:
    C. Riener
Convexity Properties of the Cone of Nonnegative Polynomials
  • DOI:
    10.1007/s00454-004-1090-x
  • 发表时间:
    2004-06-04
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Grigoriy Blekherman
  • 通讯作者:
    Grigoriy Blekherman

Grigoriy Blekherman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Grigoriy Blekherman', 18)}}的其他基金

Ordered Algebraic Structures and Related Topics
有序代数结构及相关主题
  • 批准号:
    1546706
  • 财政年份:
    2015
  • 资助金额:
    $ 17.6万
  • 项目类别:
    Standard Grant
AG15: SIAM Conference on Applied Algebraic Geometry
AG15:SIAM​​ 应用代数几何会议
  • 批准号:
    1522597
  • 财政年份:
    2015
  • 资助金额:
    $ 17.6万
  • 项目类别:
    Standard Grant
CAREER: Nonnegative Polynomials, Sums of Squares and Real Symmetric Tensor Decompositions
职业:非负多项式、平方和和实对称张量分解
  • 批准号:
    1352073
  • 财政年份:
    2014
  • 资助金额:
    $ 17.6万
  • 项目类别:
    Continuing Grant

相似海外基金

Counting number fields with finite Abelian Galois group of bounded conductor that can be described as the sum of two squares.
使用有界导体的有限阿贝尔伽罗瓦群来计算数域,可以将其描述为两个平方和。
  • 批准号:
    2889914
  • 财政年份:
    2023
  • 资助金额:
    $ 17.6万
  • 项目类别:
    Studentship
CAREER: Statistics through the Sum of Squares Lens
职业:通过平方和透镜进行统计
  • 批准号:
    2238080
  • 财政年份:
    2023
  • 资助金额:
    $ 17.6万
  • 项目类别:
    Continuing Grant
Adaptation of Dynamic Weighted Ordinary Least Squares Regression in the Presence of Interference Networks
存在干扰网络时动态加权普通最小二乘回归的自适应
  • 批准号:
    569021-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 17.6万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Latin squares and strongly regular graphs
拉丁方和强正则图
  • 批准号:
    572186-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 17.6万
  • 项目类别:
    University Undergraduate Student Research Awards
CAREER: Optimal High-Dimensional Estimators Using Sum-of-Squares Proof Systems
职业:使用平方和证明系统的最优高维估计器
  • 批准号:
    2143246
  • 财政年份:
    2022
  • 资助金额:
    $ 17.6万
  • 项目类别:
    Continuing Grant
Min-max problems related to Steenrod squares
与 Steenrod 平方相关的最小-最大问题
  • 批准号:
    572642-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 17.6万
  • 项目类别:
    University Undergraduate Student Research Awards
Finite Element Methods for Elliptic Least-Squares Problems with Inequality Constraints
具有不等式约束的椭圆最小二乘问题的有限元方法
  • 批准号:
    2208404
  • 财政年份:
    2022
  • 资助金额:
    $ 17.6万
  • 项目类别:
    Standard Grant
A Study of Advanced Least Squares Estimation Methods to Support Spatial Data Infrastructure
支持空间数据基础设施的先进最小二乘估计方法研究
  • 批准号:
    534146-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 17.6万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Least Squares PGD Mimetic Spectral Element Methods for Systems of First-Order PDEs
一阶偏微分方程组的最小二乘 PGD 模拟谱元方法
  • 批准号:
    2316393
  • 财政年份:
    2021
  • 资助金额:
    $ 17.6万
  • 项目类别:
    Studentship
A divide and conquer attack on challenging least squares problems
针对具有挑战性的最小二乘问题的分而治之攻击
  • 批准号:
    EP/W009676/1
  • 财政年份:
    2021
  • 资助金额:
    $ 17.6万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了