CAREER: Theory and Methods for Simultaneous Variable Selection and Rank Reduction
职业:同时变量选择和降级的理论和方法
基本信息
- 批准号:1352259
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The data explosion in all fields of science creates an urgent need for methodologies for analyzing high dimensional multivariate data. The project deepens and broadens existing sparsity and low rank statistical theories and methods by making the following major scientific achievements: (a) an innovative selectable reduced rank methodology through simultaneous variable selection and projection, with guaranteed lower error rate than existing variable selection and rank reduction rates in theory, which paves the way to new frontiers in high dimensional statistics and information theory; (b) fast but simple-to-implement algorithms that can deal with all popular penalty functions (possibly nonconvex) in computation with guaranteed global convergence and local optimality, to ensure the practicality of the proposed approaches in big data applications; (c) a generic extension to non-Gaussian models capable of taking into account the correlation between multivariate responses, with a universal algorithm design based on manifold optimization; (d) a unified robustification scheme that can both identify and accommodate gross outliers occurring frequently in real data, to overcome the non-robustness of many conventional multivariate tools; (e) general-purpose model selection methods serving variable selection and/or rank reduction and achieving the finite-sample optimal prediction error rate with theoretical guarantee. The need to recover low-dimensional signals from high dimensional multivariate noisy data permeates all fields of science and engineering. Hence a project of this nature, designed to develop transformative theory and methods for simultaneous variable selection and rank reduction, finds applications in a wide range of disciplines and areas such as machine learning, signal processing, and biostatistics, among others. By cross-fertilizing ideas from statistics, mathematics, engineering, and computer science, the integrated research and education help students develop critical thinking through cross-disciplinary training, and assist students in becoming life-long learners. The investigator uses the rich topics in this project to inspire the learning and discovery interest of the public and students of all ages. The educational plan consists of course development, student mentoring, outreach, and recruiting underrepresented students.
科学各个领域的数据爆炸产生了对分析高维多变量数据的方法的迫切需求。该项目通过取得以下重大科学成果,深化和拓宽了现有的稀疏性和低秩数统计理论和方法:(A)通过同时选择变量和投影的创新的可选择降阶方法,在理论上保证了比现有变量选择和降秩率更低的错误率,为高维统计和信息论的新前沿铺平了道路;(B)快速但易于实现的算法,可以处理计算中所有流行的惩罚函数(可能是非凸的),并保证全局收敛和局部最优性,以确保所提方法在大数据应用中的实用性;(C)能够考虑到多变量响应之间相关性的非高斯模型的一般推广,基于流形优化的通用算法设计;(D)能够识别并适应真实数据中频繁出现的粗大异常值的统一鲁棒性方案,以克服许多传统多变量工具的非稳健性;(E)用于变量选择和/或降阶的通用模型选择方法,并在理论上保证有限样本的最优预测错误率。从高维多变量噪声数据中恢复低维信号的需求渗透到科学和工程的各个领域。因此,这种性质的项目旨在开发用于同时选择变量和降阶的变革性理论和方法,在机器学习、信号处理和生物统计学等广泛的学科和领域中找到了应用。通过交叉融合统计学、数学、工程学和计算机科学的思想,综合研究和教育通过跨学科训练帮助学生发展批判性思维,帮助学生成为终身学习者。调查人员用这个项目中丰富的主题来激发公众和各个年龄段的学生学习和发现的兴趣。教育计划包括课程开发、学生指导、外展和招收代表性不足的学生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yiyuan She其他文献
Indirect Gaussian Graph Learning Beyond Gaussianity
超越高斯性的间接高斯图学习
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:6.6
- 作者:
Yiyuan She;Shao Tang;Qiaoya Zhang - 通讯作者:
Qiaoya Zhang
Reduced Rank Vector Generalized Linear Models for Feature Extraction
- DOI:
10.4310/sii.2013.v6.n2.a4 - 发表时间:
2010-07 - 期刊:
- 影响因子:0
- 作者:
Yiyuan She - 通讯作者:
Yiyuan She
Supplementary Material for ‘Robust Orthogonal Complement Principal Component Analysis’
“稳健正交补主成分分析”的补充材料
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yiyuan She;Shijie Li;D. Wu - 通讯作者:
D. Wu
Selective Factor Extraction in High Dimensions
- DOI:
10.1093/biomet/asw059 - 发表时间:
2014-03 - 期刊:
- 影响因子:0
- 作者:
Yiyuan She - 通讯作者:
Yiyuan She
Joint Association Graph Screening and Decomposition for Large-Scale Linear Dynamical Systems
大规模线性动力系统的联合关联图筛选与分解
- DOI:
10.1109/tsp.2014.2373315 - 发表时间:
2014 - 期刊:
- 影响因子:5.4
- 作者:
Yiyuan She;Yuejia He;Shijie Li;D. Wu - 通讯作者:
D. Wu
Yiyuan She的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yiyuan She', 18)}}的其他基金
CIF:Small: Theory and Methods for Simultaneous Feature Auto-grouping and Dimension Reduction in Supervised Multivariate Learning
CIF:Small:监督多元学习中同时特征自动分组和降维的理论和方法
- 批准号:
2105818 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Scalable Nonconvex Optimization with Statistical Guarantees for Information Computing in High Dimensions
CIF:小型:协作研究:具有统计保证的可扩展非凸优化,用于高维信息计算
- 批准号:
1617801 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Compressed Sensing for Coherent Designs under Gaussian/Non-Gaussian Noise
CIF:小型:协作研究:高斯/非高斯噪声下相干设计的压缩感知
- 批准号:
1116447 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Statistical Inference in Observational Studies -- Theory, Methods, and Beyond
职业:观察研究中的统计推断——理论、方法及其他
- 批准号:
2338760 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Tensor Factorization Methods for High-Level Electronic Structure Theory
职业:高级电子结构理论的张量分解方法
- 批准号:
2143725 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Fast and Accurate Statistical Learning and Inference from Large-Scale Data: Theory, Methods, and Algorithms
职业:从大规模数据中快速准确地进行统计学习和推理:理论、方法和算法
- 批准号:
2046874 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Foundational statistical theory and methods for analyzing populations of attributed connectomes
职业:用于分析归因连接体群体的基础统计理论和方法
- 批准号:
1942963 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Network-Based Signaling Pathway Analysis: Methods and Tools for Turning Theory into Practice
职业:基于网络的信号通路分析:将理论转化为实践的方法和工具
- 批准号:
1750981 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Multi-Objective Optimization via Simulation: Theory, Methods, and Parallel Computation
职业:通过仿真进行多目标优化:理论、方法和并行计算
- 批准号:
1554144 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Algebraic K-theory, trace methods, and non-commutative geometry
职业:代数 K 理论、迹方法和非交换几何
- 批准号:
1151577 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Cohomological Methods in Algebraic Geometry and Number Theory
职业:代数几何和数论中的上同调方法
- 批准号:
0545904 - 财政年份:2006
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Transition Pathways in Complex Systems. Theory and Numerical Methods.
职业:复杂系统中的过渡途径。
- 批准号:
0239625 - 财政年份:2003
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Advances in Theory, Design Methods, and CAD for Low-Power VLSI
职业生涯:低功耗 VLSI 的理论、设计方法和 CAD 进展
- 批准号:
9703440 - 财政年份:1997
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant