CAREER: Multi-Objective Optimization via Simulation: Theory, Methods, and Parallel Computation
职业:通过仿真进行多目标优化:理论、方法和并行计算
基本信息
- 批准号:1554144
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) grant is developing theory, methods, and algorithms for decision-making under uncertainty in complex systems that are modeled using computer-based simulations. The specific focus will be on developing implementable algorithms that identify optimal decisions with respect to multiple performance measures. Such problems arise frequently in a variety of applications including finance, energy, transportation, facility location, supply chain management, telecommunication, and healthcare management. Though widespread, these problems are under-studied, and current solution methods may be slow, imprecise, or inaccurate. Developing methods to solve such problems with provable guarantees on speed, precision, and accuracy will enable decision-makers to make better, timely decisions across a variety of disciplines. Society will benefit from improved systems, characterized by increased efficiency and reduced cost. This project also supports the PI's educational goal of disseminating clear and engaging educational materials at the interface of probability and optimization that recruit, train, and retain the next generation of professionals who make decisions under uncertainty.This research will develop theory, methods, and parallel algorithms for solving multi-objective optimization via simulation problems. Multi-objective optimization via simulation problems are nonlinear multi-objective optimization problems in which each objective can only be observed with error as output from a Monte Carlo simulation; a solution to this problem is a non-dominated (Pareto) set. Despite its prevalence and mature development in the analogous deterministic context, multi-objective optimization via simulation problems have seen relatively little theoretical and algorithmic development in the optimization via simulation literature. These problems are difficult to solve because of their complexity: the objective functions can only be estimated with error through potentially expensive Monte Carlo simulation, and the Pareto set often grows in the number of objectives. The proposed research will develop the theoretical underpinnings of estimating Pareto sets in the stochastic context. Specifically, the proposed theory and methods include scaling for dimension reduction, asymptotic approximation, optimization frameworks that retrieve fast convergence rates, and parallel implementation. Such understanding will lead to new algorithmic methods that evolve optimally in a provable sense and to implementable, efficient parallel algorithms for solving these difficult problems.
学院早期职业发展(Career)助学金正在开发理论、方法和算法,用于复杂系统中的不确定情况下的决策,这些系统使用基于计算机的模拟来建模。具体的重点将是开发可实现的算法,以识别关于多个性能指标的最优决策。这类问题经常出现在各种应用中,包括南希、能源、交通、设施选址、供应链管理、电信和医疗保健管理。虽然这些问题普遍存在,但研究不足,目前的解决方法可能缓慢、不精确或不准确。开发解决此类问题的方法,并在速度、精确度和准确性方面提供可证明的保证,将使决策者能够在各种学科中做出更好、更及时的决策。社会将受益于以提高效率和降低成本为特征的改进的系统。这个项目还支持了PI的教育目标,即在概率和优化的界面上传播清晰和吸引人的教育材料,以招募、培养和留住在不确定情况下做出决策的下一代专业人员。这项研究将开发通过模拟问题解决多目标优化的理论、方法和并行算法。基于仿真的多目标优化问题是一类非线性多目标优化问题,其中每个目标只能作为蒙特卡罗模拟的输出带误差观测;该问题的解是一个非支配(Pareto)集。尽管多目标优化问题在类似确定性的背景下得到了广泛的应用和成熟的发展,但基于模拟问题的多目标优化在理论和算法方面的发展相对较少。由于它们的复杂性,这些问题很难解决:目标函数只能通过潜在昂贵的蒙特卡罗模拟来估计,而且帕累托集往往会随着目标数量的增加而产生误差。这项研究将为在随机环境下估计帕累托集奠定理论基础。具体地说,提出的理论和方法包括用于降维的缩放、渐近逼近、获得快速收敛速度的优化框架和并行实现。这样的理解将导致新的算法方法在可证明的意义上最优地发展,并导致可实现的、有效的并行算法来解决这些困难的问题。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An epsilon-constraint method for integer-ordered bi-objective simulation optimization
- DOI:10.1109/wsc.2017.8247961
- 发表时间:2017-12
- 期刊:
- 影响因子:0
- 作者:K. Cooper;S. R. Hunter;K. Nagaraj
- 通讯作者:K. Cooper;S. R. Hunter;K. Nagaraj
An Introduction to Multiobjective Simulation Optimization
多目标仿真优化简介
- DOI:10.1145/3299872
- 发表时间:2019
- 期刊:
- 影响因子:0.9
- 作者:Hunter, Susan R.;Applegate, Eric A.;Arora, Viplove;Chong, Bryan;Cooper, Kyle;Rincón-Guevara, Oscar;Vivas-Valencia, Carolina
- 通讯作者:Vivas-Valencia, Carolina
SCORE Allocations for Bi-objective Ranking and Selection
- DOI:10.1145/3158666
- 发表时间:2018-01
- 期刊:
- 影响因子:0
- 作者:Guy Feldman;S. R. Hunter
- 通讯作者:Guy Feldman;S. R. Hunter
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Susan Hunter其他文献
Can pressure mapping prevent ulcers?
压力图可以预防溃疡吗?
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
D. Hanson;D. Langemo;Julie W. Anderson;Patricia A Thompson;Susan Hunter - 通讯作者:
Susan Hunter
Offloading Diabetic Foot Ulcers
减轻糖尿病足溃疡的负担
- DOI:
10.1097/00129334-200601000-00007 - 发表时间:
2006 - 期刊:
- 影响因子:2.4
- 作者:
Patricia A Thompson;D. Langemo;Susan Hunter;D. Hanson;Julie W. Anderson - 通讯作者:
Julie W. Anderson
What you should know about psoriasis.
关于牛皮癣您应该了解什么。
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
D. Hanson;Patricia A Thompson;D. Langemo;Susan Hunter;Jennifer Tinkler;Julie W. Anderson - 通讯作者:
Julie W. Anderson
Comparison of 2 wound volume measurement methods.
2种伤口体积测量方法的比较。
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:2.4
- 作者:
D. Langemo;Helen Melland;B. Olson;D. Hanson;Susan Hunter;S. Henly;Patricia A Thompson - 通讯作者:
Patricia A Thompson
Support Surfaces: Definitions and Utilization for Patient Care
支撑表面:患者护理的定义和利用
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:2.4
- 作者:
Patricia A Thompson;Julie W. Anderson;D. Langemo;D. Hanson;Susan Hunter - 通讯作者:
Susan Hunter
Susan Hunter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于Multi-Pass Cell的高功率皮秒激光脉冲非线性压缩关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Multi-decadeurbansubsidencemonitoringwithmulti-temporaryPStechnique
- 批准号:
- 批准年份:2022
- 资助金额:80 万元
- 项目类别:
High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
- 批准号:52111530069
- 批准年份:2021
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
基于8色荧光标记的Multi-InDel复合检测体系在降解混合检材鉴定的应用研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘-印支块体地壳流追踪中的应用
- 批准号:
- 批准年份:2021
- 资助金额:15 万元
- 项目类别:
大规模非确定图数据分析及其Multi-Accelerator并行系统架构研究
- 批准号:62002350
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
3D multi-parameters CEST联合DKI对椎间盘退变机制中微环境微结构改变的定量研究
- 批准号:82001782
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
高速Multi-bit/cycle SAR ADC性能优化理论研究
- 批准号:62004023
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于multi-SNP标记及不拆分策略的复杂混合样本身份溯源研究
- 批准号:
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘—印支块体地壳流追踪中的应用
- 批准号:
- 批准年份:2020
- 资助金额:万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
Cell factory design: unlocking the Multi-Objective Stochastic meTabolic game (MOST)
细胞工厂设计:解锁多目标随机代谢游戏(MOST)
- 批准号:
EP/X041239/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
HarmonicAI: Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和隐私保护人工智能的人工引导协作多目标设计
- 批准号:
EP/Z000262/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
HarmonicAI: Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和隐私保护人工智能的人工引导协作多目标设计
- 批准号:
EP/Y03743X/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
HarmonicAI: Human-guided collAboRative Multi-Objective design of explaiNable, faIr and privaCy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和保护隐私的人工智能的人类引导协作多目标设计
- 批准号:
EP/Z000041/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
HarmonicAI: Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和隐私保护人工智能的人工引导协作多目标设计
- 批准号:
EP/Y037367/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Transformer-based Framework for Multi-objective Reinforcement Learning using Hierarchical Policies
使用分层策略的基于 Transformer 的多目标强化学习框架
- 批准号:
24K20843 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Multi-step and Multi-objective Optimization of EVs Charging through Coupled Power-traffic Simulation
通过电力-交通耦合仿真对电动汽车充电进行多步骤、多目标优化
- 批准号:
23K13513 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development and application of learning theory for uncertainty in Bayesian deep learning based on multi-objective optimization
基于多目标优化的贝叶斯深度学习不确定性学习理论发展及应用
- 批准号:
23K16948 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
EAGER: A New Explainable Multi-objective Learning Framework for Personalized Dietary Recommendations against Opioid Misuse and Addiction
EAGER:一种新的可解释的多目标学习框架,用于针对阿片类药物滥用和成瘾的个性化饮食建议
- 批准号:
2334193 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
A multi-foci objective lens for large scale brain activity recording
用于大规模大脑活动记录的多焦点物镜
- 批准号:
10731905 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别: