Extremal Behavior of Time Series: Refined Models, Analysis and Inference

时间序列的极值行为:精细模型、分析和推理

基本信息

项目摘要

The aim of this project is the development of new probabilistic and statistical methods which allow for a refined description of the extremal behavior of asymptotically independent time series, i.e. time series which show no clustering of extreme values in the limit. So far, a well explored theory about time series extremes exists only in the asymptotically dependent case. However, the “classical” asymptotic approach of extreme value theory neglects the fact that a variety of different behaviors may evolve in the “pre-asymptotic” behavior of a time series. For example, many asymptotically independent time series models show a decent amount of clustering of large values in finite samples sizes. By a combination of models for asymptotically independent random vectors and methods of asymptotically dependent time series, we aim at a refinement of the tools of extreme value theory that allow for a better description and distinction of different types of asymptotic independence. We tackle both the probabilistic aspects by the development of new limit processes for cases in which classic theory gives only degenerate results, and the statistical side by giving estimators for different aspects of extremal dependence and statistical procedures for model estimation and validation. A prominent example of asymptotically independent time series is the well-known class of stochastic volatility models. Therefore, a special focus is laid on the analysis of financial time series, especially with regard to the suitability of this class for modeling the extremes of financial data.
该项目的目的是开发新的概率和统计方法,以便精确描述渐近独立时间序列的极值行为,即在极限中没有极值聚集的时间序列。到目前为止,一个很好的探索理论的时间序列极值只存在于渐近相关的情况下。然而,极值理论的“经典”渐近方法忽略了一个事实,即各种不同的行为可能演变的“前渐近”行为的时间序列。例如,许多渐近独立的时间序列模型在有限的样本大小中显示出大量的大值聚类。通过渐近独立的随机向量模型和渐近相关的时间序列的方法相结合,我们的目标是改进极值理论的工具,允许更好地描述和区分不同类型的渐近独立性。我们解决的概率方面的发展,新的极限过程的情况下,经典理论只给出退化的结果,和统计方面的极值依赖和统计程序模型估计和验证的不同方面的估计。渐近独立时间序列的一个突出例子是众所周知的一类随机波动率模型。因此,一个特别的重点放在金融时间序列的分析,特别是关于这个类的建模金融数据的极端的适用性。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Joint exceedances of random products
  • DOI:
    10.1214/16-aihp811
  • 发表时间:
    2015-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anja Janssen;H. Drees
  • 通讯作者:
    Anja Janssen;H. Drees
A stochastic volatility model with flexible extremal dependence structure
  • DOI:
    10.3150/15-bej699
  • 发表时间:
    2016-08-01
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Janssen, Anja;Drees, Holger
  • 通讯作者:
    Drees, Holger
Statistics for tail processes of Markov chains
马尔可夫链尾部过程统计
  • DOI:
    10.1007/s10687-015-0217-1
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Segers;Warchoł
  • 通讯作者:
    Warchoł
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Anja Janßen其他文献

Professorin Dr. Anja Janßen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

CAREER: Well-posedness and long-time behavior of reaction-diffusion and kinetic equations
职业:反应扩散和动力学方程的适定性和长期行为
  • 批准号:
    2337666
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: New Approaches to Predicting Long-time Behavior of Polymer Glasses
合作研究:预测聚合物玻璃长期行为的新方法
  • 批准号:
    2330759
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Well-posedness and Long-time Behavior of Dispersive Integrable Systems
色散可积系统的适定性和长期行为
  • 批准号:
    2348018
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: New Approaches to Predicting Long-time Behavior of Polymer Glasses
合作研究:预测聚合物玻璃长期行为的新方法
  • 批准号:
    2330760
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Large time behavior of solutions to nonlinear hyperbolic and dispersive equations with weakly dissipative structure
弱耗散结构非线性双曲和色散方程解的大时间行为
  • 批准号:
    22KJ2801
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Wireless CMOS device for observing real-time brain activity and animal behavior
用于观察实时大脑活动和动物行为的无线 CMOS 设备
  • 批准号:
    23K06786
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Doctoral Dissertation Research: Cross-language transfer in voice onset time: A window into perceptual adaptation in brain and behavior
博士论文研究:发声时间的跨语言迁移:了解大脑和行为知觉适应的窗口
  • 批准号:
    2234907
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Linking 3He/4He with eruptive behavior: A time series analysis of recent Kilauea, Iceland, and La Palma eruptions
合作研究:将 3He/4He 与喷发行为联系起来:对近期基拉韦厄火山、冰岛火山和拉帕尔马火山喷发的时间序列分析
  • 批准号:
    2232532
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Sedentary Most of the Time: Can Sedentary Behavior Cancel the Benefits of Focused Daily Exercise on Atherosclerosis
大部分时间久坐:久坐行为会抵消日常集中运动对动脉粥样硬化的益处吗
  • 批准号:
    495432
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Synchronous Behavior Quantification for Real-Time Evacuation Wayfinding System in Large Enclosed Space Fires
大型封闭空间火灾实时疏散寻路系统的同步行为量化
  • 批准号:
    23K17806
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了