ABI Innovation: A New Automated Data Integration, Annotations, and Interaction Network Inference System for Analyzing Drosophila Gene Expression

ABI Innovation:用于分析果蝇基因表达的新型自动化数据集成、注释和交互网络推理系统

基本信息

  • 批准号:
    1356628
  • 负责人:
  • 金额:
    $ 61.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Large-scale in situ hybridization (ISH) screens are providing an abundance of data showing spatio-temporal patterns of gene expression that are valuable for understanding the mechanisms of gene regulation. Knowledge gained from analysis of Drosophila expression patterns is widely important, because a large number of genes involved in fruit fly development are commonly found in humans and other species. Thus, research efforts into the spatial and temporal characteristics of Drosophila gene expression images have been at the leading-edge of scientific investigations into the fundamental principles of different species development. Drosophila gene expression pattern images enable the integration of spatial expression patterns with other genomic datasets that link regulator with their downstream targets. This project addresses the computational challenges in analyzing Drosophila gene expression patterns by leveraging a new bioinformatics software system. It focuses on designing principled bioinformatics and computational biology algorithms and tools that will integrate multi-modal spatial patterns of gene expression for Drosophila embryos' developmental stage recognition and anatomical ontology term annotation, and will infer gene interaction networks to generate a more comprehensive picture of gene function and interaction. The bioinformatics methods resulting from the project activities are broadly applicable to a variety of fields such as biomedical science and engineering, systems biology, clinical pathology, oncology, and pharmaceutics. Novel tools to enhance courses and research experiences for diverse populations of students are planned to broaden participation in science. This project investigates three challenging problems for studying the Drosophila embryo ISH Images via innovative bioinformatics algorithms: 1) the sparse multi-dimensional feature learning method to integrate the multimodal spatial gene expression patterns for annotating Drosophila ISH images, 2) the heterogeneous multi-task learning models using the high-order relational graph to jointly recognize the developmental stages and annotate anatomical ontology terms, 3) the embedded sparse representation algorithm to infer the gene interaction network. It is innovative to apply structured sparse learning, multi-task learning, and high-order relational graph models to Drosophila gene expression patterns analysis and holds great promise for scientific investigations into the fundamental principles of animal development. The algorithms and tools as outcomes of this research are expected to help knowledge discovery for applications in broader scientific and biological domains with massive high-dimensional and heterogeneous data sets. This project facilitates the development of novel educational tools to enhance several current courses at University of Texas at Arlington. The PIs engage minority students and under-served populations in research activities to provide opportunities for exposure to cutting-edge scientific research. For further information see the web site at: http://ranger.uta.edu/~heng/NSF-DBI-1356628.html
大规模原位杂交(ISH)筛选提供了丰富的数据,显示了基因表达的时空模式,这对理解基因调控机制有价值。从果蝇表达模式的分析中获得的知识非常重要,因为与果蝇发育有关的大量基因在人类和其他物种中普遍存在。因此,对果蝇基因表达图像时空特征的研究一直处于不同物种发育基本原理科学研究的前沿。果蝇基因表达模式图像能够将空间表达模式与其他基因组数据集整合起来,将调节因子与其下游靶点联系起来。该项目通过利用新的生物信息学软件系统解决了分析果蝇基因表达模式的计算挑战。其重点是设计有原则的生物信息学和计算生物学算法和工具,这些算法和工具将整合基因表达的多模态空间模式,用于果蝇胚胎发育阶段识别和解剖本体术语注释,并将推断基因相互作用网络,以产生更全面的基因功能和相互作用图像。项目活动产生的生物信息学方法广泛适用于各种领域,如生物医学科学与工程、系统生物学、临床病理学、肿瘤学和药剂学。计划采用新颖的工具来提高不同学生群体的课程和研究经验,以扩大对科学的参与。本项目探讨了通过创新的生物信息学算法研究果蝇胚胎ISH图像的三个具有挑战性的问题:1)采用稀疏多维特征学习方法整合多模态空间基因表达模式进行果蝇ISH图像标注;2)采用高阶关系图的异构多任务学习模型联合识别发育阶段和标注解剖本体术语;3)采用嵌入式稀疏表示算法推断基因交互网络。将结构化稀疏学习、多任务学习和高阶关系图模型应用于果蝇基因表达模式分析是一种创新,对动物发育基本原理的科学研究具有很大的前景。作为本研究成果的算法和工具有望帮助在更广泛的科学和生物领域应用大量高维和异构数据集的知识发现。该项目促进了新型教育工具的开发,以加强德克萨斯大学阿灵顿分校目前的几门课程。pi让少数民族学生和服务不足的人群参与研究活动,为接触尖端科学研究提供机会。欲了解更多信息,请访问网站:http://ranger.uta.edu/~heng/NSF-DBI-1356628.html

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Semi-Supervised Classifications via Elastic and Robust Embedding
  • DOI:
    10.1609/aaai.v31i1.10946
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yun Liu;Yiming Guo;Hua Wang;F. Nie;Heng Huang
  • 通讯作者:
    Yun Liu;Yiming Guo;Hua Wang;F. Nie;Heng Huang
Asynchronous Mini-Batch Gradient Descent with Variance Reduction for Non-Convex Optimization
  • DOI:
    10.1609/aaai.v31i1.10940
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhouyuan Huo;Heng Huang
  • 通讯作者:
    Zhouyuan Huo;Heng Huang
Theoretic Analysis and Extremely Easy Algorithms for Domain Adaptive Feature Learning
  • DOI:
    10.24963/ijcai.2017/272
  • 发表时间:
    2015-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenhao Jiang;Cheng Deng;W. Liu;F. Nie;K. F. Chung;Heng Huang
  • 通讯作者:
    Wenhao Jiang;Cheng Deng;W. Liu;F. Nie;K. F. Chung;Heng Huang
Learning Task Relational Structure for Multi-task Feature Learning
Joint Capped Norms Minimization for Robust Matrix Recovery
鲁棒矩阵恢复的联合上限范数最小化
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heng Huang其他文献

Perianesthesia Care of the Oncologic Patients Undergoing Cytoreductive Surgery with Hyperthermic Intraperitoneal Chemotherapy: A Retrospective Study.
接受热腹腔化疗肿瘤细胞减灭术的肿瘤患者的围麻醉护理:一项回顾性研究。
Functional analysis of cardiac MR images using SPHARM modeling
使用 SPHARM 建模对心脏 MR 图像进行功能分析
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heng Huang;Li Shen;J. Ford;F. Makedon;Rong Zhang;Ling Gao;J. Pearlman
  • 通讯作者:
    J. Pearlman
Monitoring Association of Membrane Proteins with Micro-Domains and Cytoskeleton in Live Cells During Signaling and Perturbation
  • DOI:
    10.1016/j.bpj.2010.12.1596
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Heng Huang;Arnd Pralle
  • 通讯作者:
    Arnd Pralle
Modeling study on anisotropic heat conduction of PEMFC GDLs facilitated by Micro-CT
基于微CT的质子交换膜燃料电池气体扩散层各向异性热传导的建模研究
  • DOI:
    10.1016/j.ijheatmasstransfer.2025.127302
  • 发表时间:
    2025-11-01
  • 期刊:
  • 影响因子:
    5.800
  • 作者:
    Hang Liu;Xuecheng Lv;Heng Huang;Yang Li;Deqi Li;Zhifu Zhou;Wei-Tao Wu;Lei Wei;Yubai Li;Yongchen Song
  • 通讯作者:
    Yongchen Song
Research on Virtual Enterprise Workflow Modeling and Management System Implementation
虚拟企业工作流建模及管理系统实现研究

Heng Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Heng Huang', 18)}}的其他基金

Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
  • 批准号:
    2347617
  • 财政年份:
    2023
  • 资助金额:
    $ 61.04万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 61.04万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
  • 批准号:
    2348169
  • 财政年份:
    2023
  • 资助金额:
    $ 61.04万
  • 项目类别:
    Continuing Grant
A New Machine Learning Framework for Single-Cell Multi-Omics Bioinformatics
单细胞多组学生物信息学的新机器学习框架
  • 批准号:
    2405416
  • 财政年份:
    2023
  • 资助金额:
    $ 61.04万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
  • 批准号:
    2347592
  • 财政年份:
    2023
  • 资助金额:
    $ 61.04万
  • 项目类别:
    Standard Grant
SCH: INT: New Machine Learning Framework to Conduct Anesthesia Risk Stratification and Decision Support for Precision Health
SCH:INT:用于进行麻醉风险分层和精准健康决策支持的新机器学习框架
  • 批准号:
    2347604
  • 财政年份:
    2023
  • 资助金额:
    $ 61.04万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
  • 批准号:
    2348306
  • 财政年份:
    2023
  • 资助金额:
    $ 61.04万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
  • 批准号:
    2213701
  • 财政年份:
    2022
  • 资助金额:
    $ 61.04万
  • 项目类别:
    Standard Grant
A New Machine Learning Framework for Single-Cell Multi-Omics Bioinformatics
单细胞多组学生物信息学的新机器学习框架
  • 批准号:
    2225775
  • 财政年份:
    2022
  • 资助金额:
    $ 61.04万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
  • 批准号:
    2217003
  • 财政年份:
    2022
  • 资助金额:
    $ 61.04万
  • 项目类别:
    Continuing Grant

相似海外基金

New Physics in Artificial Spin Ice via Materials Innovation
通过材料创新实现人造旋转冰的新物理
  • 批准号:
    2419407
  • 财政年份:
    2024
  • 资助金额:
    $ 61.04万
  • 项目类别:
    Continuing Grant
NSF Engines Development Award: Building a space-based innovation ecosystem in New Mexico (NM)
NSF 发动机发展奖:在新墨西哥州 (NM) 建立天基创新生态系统
  • 批准号:
    2314657
  • 财政年份:
    2024
  • 资助金额:
    $ 61.04万
  • 项目类别:
    Cooperative Agreement
NSF Engines Development Award: Advancing a materials innovation ecosystem for manufacturing sustainability in upstate New York (NY)
NSF 发动机开发奖:推进材料创新生态系统,实现纽约州北部制造业的可持续发展
  • 批准号:
    2315307
  • 财政年份:
    2024
  • 资助金额:
    $ 61.04万
  • 项目类别:
    Cooperative Agreement
Exploring sustainable growth models and innovation as a new growth strategy in declining industries
探索可持续增长模式和创新作为衰退行业的新增长战略
  • 批准号:
    23K01523
  • 财政年份:
    2023
  • 资助金额:
    $ 61.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New GORDON RESEARCH CONFERENCE: Advanced Cell and Tissue Biomanufacturing: Technology Development and Innovation through Convergence
新戈登研究会议:先进细胞和组织生物制造:通过融合进行技术开发和创新
  • 批准号:
    10682943
  • 财政年份:
    2023
  • 资助金额:
    $ 61.04万
  • 项目类别:
New Physics in Artificial Spin Ice via Materials Innovation
通过材料创新实现人造旋转冰的新物理学
  • 批准号:
    2310275
  • 财政年份:
    2023
  • 资助金额:
    $ 61.04万
  • 项目类别:
    Continuing Grant
Targeted Infusion Project: Curricular Innovation of Microbiology and Genetics Laboratories - New Strategies for Biology Student Success
定向输注项目:微生物学和遗传学实验室的课程创新——生物学学生成功的新策略
  • 批准号:
    2306045
  • 财政年份:
    2023
  • 资助金额:
    $ 61.04万
  • 项目类别:
    Standard Grant
Implementation of EDI-D Principles and Open Communication Practices for Scientific Innovation and Dissemination - A New Canadian Connective Tissue Conference Workshop
实施 EDI-D 原则和科学创新和传播的开放式交流实践 - 加拿大新结缔组织会议研讨会
  • 批准号:
    487891
  • 财政年份:
    2023
  • 资助金额:
    $ 61.04万
  • 项目类别:
    Miscellaneous Programs
Collaborative Research: CCRI: New: An Infrastructure for Sustainable Innovation and Research in Computer Science Education
合作研究:CCRI:新:计算机科学教育可持续创新和研究的基础设施
  • 批准号:
    2213790
  • 财政年份:
    2022
  • 资助金额:
    $ 61.04万
  • 项目类别:
    Standard Grant
Creation of a New Unified Theory of Tactile Sensation for VR Innovation –Gestalts of Tactile, Heat and Pain Senses–
为 VR 创新创建新的统一触觉理论
  • 批准号:
    22K19791
  • 财政年份:
    2022
  • 资助金额:
    $ 61.04万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了