Collaborative Research: A New Infrastructure for Monitoring Social Class Networks.

协作研究:监控社会阶层网络的新基础设施。

基本信息

  • 批准号:
    1357488
  • 负责人:
  • 金额:
    $ 11.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

SES-1357488David GruskyStanford UniversitySES-1357442Michael MacyCornell UniversityOver the last 15 years, an ever larger and more diverse population is choosing to interact using social media that record the digital traces of their communications, a development that opens up unprecedented opportunities to study the network foundation of social class relations. Although there is a long tradition of research examining whether social classes in the United States are well-formed, it has been based exclusively on survey and Census data and, by necessity, has ignored the network foundations of class structure and formation. This research takes advantage of the rising amount of interaction with social media to examine that network structure at population scale. The resulting methods will provide the basis for a new and novel research infrastructure for investigating inter-personal interaction within and between social classes in the United States.By using data from a complete crawl of U.S. Twitter users, it becomes possible to measure class barriers to interpersonal interaction. The centerpiece of this approach is the development of methods to measure the class situation of users with profile data, lexical analysis of message content, and housing valuations for geo-located users. To supplement and validate these behavioral measures, a survey will be administered to a random sample of network edges. A similar analysis of Facebook users will be carried out. The resulting data will be used to complete the first network-based analyses of the extent and patterning of the U.S. class structure. In conventional ?static analyses? of the class structure, the size of inter-class differences in behaviors and attitudes (e.g., childrearing practices, political attitudes) is emphasized, while the patterning of inter-class contact and networks that link classes together is ignored. The key question, therefore, is whether the proposed network analyses of class yield a different portrait of the structure of social classes than the static analyses that have dominated decades of class research in the U.S. At the same time, some network-based analyses of class have been attempted in the past, analyses that have relied on an idiosyncratic range of network behaviors that may be discerned with survey methods (especially, assortative mating where people marry persons with similar education and occupational characteristics, and intergenerational social mobility). The analyses undertaken here will reveal whether social media reduces class barriers to interaction relative to the level of class homophily (the tendency of people to associate with similar people) revealed in face-to-face networks available in survey data. These analyses will provide the foundation of a new network-based analysis of class structure.Broader ImpactsIf class barriers are comparatively weak in on-line interactions, standard measurements of class structure will provide an increasingly misleading portrait of civil society and its inclusiveness. It is also plausible, however, that the powerful search algorithms of online platforms allow people to efficiently cull for alters who are similar to themselves. If the latter proves to be the case, it means that the rise of new social media are, contrary to the conventional view, increasing class homophily and polarizing class relations. The research also has a methodological payoff. Because a network-based analysis of social class structure requires high-quality measurements of the class situation of media users, much of the research will focus on developing the methods that make such measurement possible. The social class of users and alters will be imputed by (a) linking geo-located users to their neighborhoods and housing values, (b) exploiting available profile data, (c) carrying out a lexical analysis of message content, and (d) administering surveys to users. These methods, which may be extended to carry out analogous imputations of race, gender, and other ascribed traits, will be of use to researchers in the social sciences, computer science, information science, and other disciplines facing the stock situation in which direct information on individual traits is scarce. The project will also provide new research opportunities for graduates and undergraduates at Cornell University and Stanford University.
在过去的15年里,越来越多、越来越多样化的人选择使用社交媒体进行互动,这些媒体记录了他们交流的数字痕迹,这一发展为研究社会阶级关系的网络基础提供了前所未有的机会。尽管对美国社会阶层是否形成良好的研究有着悠久的传统,但它完全是基于调查和人口普查数据,而且必然忽略了阶级结构和形成的网络基础。这项研究利用了社交媒体互动数量的增加,在人口规模上研究了这种网络结构。由此产生的方法将为研究美国社会阶层内部和社会阶层之间的人际互动提供新的研究基础。通过使用来自美国Twitter用户的完整抓取数据,可以衡量人际互动的阶级障碍。该方法的核心是开发方法,使用概要数据、消息内容的词法分析和地理位置用户的住房估值来衡量用户的阶级状况。为了补充和验证这些行为措施,将对网络边缘的随机样本进行调查。对Facebook用户也将进行类似的分析。结果数据将用于完成第一个基于网络的美国阶级结构的范围和模式分析。传统的?静态分析?在阶级结构中,强调了阶级间在行为和态度(例如养育子女的做法、政治态度)方面差异的大小,而忽略了阶级间联系的模式和将阶级联系在一起的网络。因此,关键问题是,所提出的阶级网络分析是否产生了与主导美国几十年阶级研究的静态分析不同的社会阶级结构肖像。与此同时,过去已经尝试了一些基于网络的阶级分析,这些分析依赖于可能通过调查方法识别的特殊网络行为范围(特别是,选择性交配(人们与教育和职业特征相似的人结婚,以及代际社会流动性)。这里进行的分析将揭示,相对于调查数据中显示的面对面网络中的阶级同质性水平(人们与相似的人交往的倾向),社交媒体是否减少了互动中的阶级障碍。这些分析将为一种新的基于网络的阶级结构分析提供基础。更广泛的影响如果阶级障碍在网上互动中相对较弱,那么阶级结构的标准测量将提供一幅越来越具有误导性的公民社会及其包容性的肖像。然而,网络平台强大的搜索算法使人们能够有效地挑选出与自己相似的人,这也是合情合理的。如果事实证明是后者,那就意味着与传统观点相反,新社交媒体的兴起正在加剧阶级同质化和阶级关系的两极分化。这项研究也有方法论上的回报。由于基于网络的社会阶级结构分析需要对媒体用户的阶级状况进行高质量的测量,因此大部分研究将侧重于开发使这种测量成为可能的方法。用户和变更的社会阶层将通过以下方式进行估算:(a)将地理定位用户与其社区和房屋价值联系起来,(b)利用可用的个人资料数据,(c)对消息内容进行词汇分析,以及(d)对用户进行调查。这些方法可以扩展到对种族、性别和其他特征进行类似的归因,将对社会科学、计算机科学、信息科学和其他学科的研究人员有用,在这些学科中,个体特征的直接信息是稀缺的。该项目还将为康奈尔大学和斯坦福大学的研究生和本科生提供新的研究机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Grusky其他文献

Changes in Racial and Gender Inequality since 1970
1970 年以来种族和性别不平等的变化
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew Snipp;Yi Cheung;Alair McLean;David Grusky;David L. Featherman
  • 通讯作者:
    David L. Featherman

David Grusky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Grusky', 18)}}的其他基金

Doctoral Dissertation Research: Gender and Institutional Emergence in Global Legal Practices
博士论文研究:全球法律实践中的性别与制度兴起
  • 批准号:
    1423439
  • 财政年份:
    2014
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: The Impact of Occupational Licensing on Wages, Inequality, and Diversity
博士论文研究:职业许可对工资、不平等和多样性的影响
  • 批准号:
    1303612
  • 财政年份:
    2013
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Gender Segregation and Integration in Select Professions
博士论文研究:特定职业中的性别隔离和融合
  • 批准号:
    1002613
  • 财政年份:
    2010
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the Economic Crisis and it's Social Impacts through Postdoctoral Fellowships
合作研究:通过博士后奖学金了解经济危机及其社会影响
  • 批准号:
    0957962
  • 财政年份:
    2010
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Continuing Grant
Dissertation Research: Admissions and Success in Education and the Labor Market.
论文研究:教育和劳动力市场的入学和成功。
  • 批准号:
    0802645
  • 财政年份:
    2008
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Integration Policies and Immigrants' Economic Incorporation
博士论文研究:融合政策与移民经济融合
  • 批准号:
    0726445
  • 财政年份:
    2007
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
The Micro-Level Structure of Social Classes
社会阶层的微观结构
  • 批准号:
    9906419
  • 财政年份:
    1999
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Continuing Grant
Doctoral Dissertation Research: Labor Market Attainment in the Context of Mass Migration: The Case of Soviet JewishImmigrants in Israel
博士论文研究:大规模移民背景下的劳动力市场成就:以色列的苏联犹太移民案例
  • 批准号:
    9801697
  • 财政年份:
    1998
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research in Sociology: From Borders to Barriers: Strategies of Occupational Closure and the Structure of Occupational Rewards
社会学博士论文研究:从边界到壁垒:职业封闭策略与职业报酬结构
  • 批准号:
    9711510
  • 财政年份:
    1997
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Pathways to Mobility within Internal Labor Markets
博士论文研究:内部劳动力市场流动途径
  • 批准号:
    9521320
  • 财政年份:
    1995
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
  • 批准号:
    2341426
  • 财政年份:
    2024
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
  • 批准号:
    2341424
  • 财政年份:
    2024
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Continuing Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315700
  • 财政年份:
    2024
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306378
  • 财政年份:
    2024
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342244
  • 财政年份:
    2024
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315699
  • 财政年份:
    2024
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding New Labor Relations for the 21st Century
合作研究:理解21世纪的新型劳动关系
  • 批准号:
    2346230
  • 财政年份:
    2024
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
  • 批准号:
    2415067
  • 财政年份:
    2024
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了