EPRI: Collaborative Research: autoFlutter: Efficient, Waterless Power Plant Cooling
EPRI:合作研究:autoFlutter:高效、无水发电厂冷却
基本信息
- 批准号:1357819
- 负责人:
- 金额:$ 15.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-05-15 至 2018-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CBET-1357819MittalThe rate of consumption and withdrawal of water for use in power plant cooling systems has become untenable in light of limited water supply and cost, as well as regulatory restrictions, and environmental concerns. However, the effectiveness of dry air cooling of current, conventional condenser systems has been hindered by the high thermal resistance and poor air thermal capacity of the cooling air. It is clear that in order to enable an appreciable decrease in water consumption for power generation, the heat transfer between the condensing steam and the air-side medium must be significantly enhanced. Earlier attempts to improve the air-side heat transfer focused on the addition of surface features (dimples, etc.) on the cooling fins with limited success and significant increase in fan power. The proposed program overcomes the limits of air-side heat transport by exploiting interactions between the cooling air flow and miniature, autonomously-fluttering reeds (AFRs) to induce the formation and advection of small-scale vortical motions near the condenser fin surfaces. A unique aspect of this approach is that reed flutter is generated by harnessing mechanical energy from the embedding cooling air flow at exceedingly low penalty in pressure losses. These low-cost thin reeds can be tailored for different regions of the condenser and fabricated either integral to the external condenser surfaces or as drop in retrofit assemblies for existing condensers. The reed assemblies are easy to install and maintain without plant level infrastructure modifications. Preliminary heat transfer enhancement and pressure drop analyses coupled with condenser designs and power plant simulations have shown that air-cooled condensers using AFR technology can increase plant efficiency while significantly reducing water consumption compared to wet cooling. The research program will focus on enabling advances in thermoelectric power plant condenser technology to overcome current limits of cooling by dry air and thereby significantly reduce water usage for evaporative cooling. The present approach overcomes the limits of air-side heat transport by exploiting interactions between the cooling air flow and miniature, autonomously-fluttering reeds (AFRs) to induce the formation and advection of small-scale vortical motions near the condenser fins. A unique aspect of this approach is that reed flutter is generated by harnessing mechanical energy from the embedding cooling air flow at exceedingly low penalty in pressure losses. The program encompasses integrated experimental/modeling/numerical investigations that will focus on the fundamental knowledge needed to implement, design, and optimize the use of the AFRs, and demonstrate their efficacy in improving the heat transfer characteristics of finned air-side passages of condensers in power plant configurations and operating conditions. The research at Georgia Tech will focus on experimental investigations of the heat transfer characteristics enhanced by the AFRs along with the modeling, design, and testing of novel condenser configurations enabled by the AFR technology. Johns Hopkins University will focus on CFD investigations of small-scale heat transfer and performance evaluation and optimization of AFR-enhanced condenser configurations. Small-scale heat transfer enhancement by AFRs was recently demonstrated in air-cooled heated ducts at Georgia Tech with significant heat transfer enhancement. These low-cost thin reeds can be tailored for different regions of the condenser and fabricated either integral to the external condenser surfaces or as drop in retrofit assemblies for existing condensers. The reed assemblies are easy to install and maintain without plant level infrastructure modifications.
CBET-1357819Mittal电厂冷却系统用水的消耗率和回收率由于供水和成本有限、监管限制和环境问题而变得难以为继。然而,目前常规凝汽器系统的干风冷却效果一直受到冷风热阻高、空气热容量差等问题的阻碍。显然,为了能够显著降低发电用水量,必须显著加强冷凝蒸汽和空气侧介质之间的换热。早期改进空气侧换热的尝试集中于增加表面特征(凹陷等)。在散热片上取得了有限的成功,但风扇功率显著增加。该程序通过利用冷却气流和微型自主颤动簧片(AFR)之间的相互作用来诱导凝汽器翅片表面附近小尺度涡流运动的形成和平流,从而克服了空气侧热传输的限制。这种方法的一个独特之处是,通过利用嵌入冷却气流的机械能以极低的压力损失惩罚产生簧片颤振。这些低成本的薄簧片可以为冷凝器的不同区域量身定做,并可以作为外部冷凝器表面的整体制造,也可以作为现有冷凝器的翻新组件。簧片组件易于安装和维护,无需修改厂级基础设施。初步的强化换热和压降分析结合凝汽器设计和发电厂模拟表明,与湿法冷却相比,采用AFR技术的空冷凝汽器可以提高工厂效率,同时显着降低水耗。该研究计划将重点放在使热电厂冷凝器技术的进步能够克服目前通过干燥空气冷却的限制,从而显著减少蒸发冷却的用水量。该方法通过利用冷却气流和微型自主颤动簧片之间的相互作用来诱导冷凝器翅片附近的小尺度涡流运动的形成和平流,从而克服了空气侧热传输的局限性。这种方法的一个独特之处是,通过利用嵌入冷却气流的机械能以极低的压力损失惩罚产生簧片颤振。该计划包括综合的实验/建模/数值调查,重点是实施、设计和优化AFR所需的基本知识,并展示它们在改善发电厂配置和运行条件下凝汽器翅片空气侧通道的换热特性方面的有效性。佐治亚理工学院的研究将集中于AFR强化换热特性的实验研究,以及AFR技术实现的新型冷凝器配置的建模、设计和测试。约翰霍普金斯大学将专注于小规模换热的CFD研究,以及AFR增强型冷凝器配置的性能评估和优化。最近在佐治亚理工学院的风冷加热管道中证明了AFRs的小规模强化换热,具有显著的换热强化作用。这些低成本的薄簧片可以为冷凝器的不同区域量身定做,并可以作为外部冷凝器表面的整体制造,也可以作为现有冷凝器的翻新组件。簧片组件易于安装和维护,无需修改厂级基础设施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rajat Mittal其他文献
A computational study of asymmetric glottal jet deflection during phonation.
发声过程中不对称声门射流偏转的计算研究。
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:2.4
- 作者:
Xudong Zheng;Rajat Mittal;Steven Bielamowicz - 通讯作者:
Steven Bielamowicz
Su1655 STOMACHSIM: AN <em>IN-SILICO</em> SIMULATOR OF GASTRIC BIOMECHANICS WITH APPLICATION TO PYLOROPLASTY
- DOI:
10.1016/s0016-5085(23)02492-7 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:
- 作者:
Sharun Kuhar;Jung-Hee Seo;Pankaj J. Pasricha;Rajat Mittal - 通讯作者:
Rajat Mittal
Recent developments in multiphysics computational models of physiological flows
- DOI:
10.1007/s00162-016-0381-1 - 发表时间:
2016-01-30 - 期刊:
- 影响因子:2.800
- 作者:
Jeff D. Eldredge;Rajat Mittal - 通讯作者:
Rajat Mittal
Extended Darcy–Forchheimer law including inertial flow deflection effects
扩展达西-福希海默定律,包括惯性流偏转效应
- DOI:
10.1017/jfm.2023.1083 - 发表时间:
2024 - 期刊:
- 影响因子:3.7
- 作者:
Mostafa Aghaei;J. Seo;Sasindu Pinto;Louis Cattafesta;C. Meneveau;Rajat Mittal - 通讯作者:
Rajat Mittal
A computational study of the effect of vocal-fold asymmetry on phonation.
声带不对称对发声影响的计算研究。
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:2.4
- 作者:
Q. Xue;Rajat Mittal;Xudong Zheng;Steven Bielamowicz - 通讯作者:
Steven Bielamowicz
Rajat Mittal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rajat Mittal', 18)}}的其他基金
Collaborative Research: Effective Face Masks to Mitigate COVID-19 Transmission: Insights from Multimodal Quantitative Analysis
合作研究:有效缓解 COVID-19 传播的口罩:多模态定量分析的见解
- 批准号:
2034983 - 财政年份:2020
- 资助金额:
$ 15.17万 - 项目类别:
Standard Grant
Multiphase Chemo-Fluid Dynamics in the Stomach: Computational Models with Applications to Gastric Digestion in Health and Disease
胃中的多相化学流体动力学:计算模型在健康和疾病中胃消化中的应用
- 批准号:
2019405 - 财政年份:2020
- 资助金额:
$ 15.17万 - 项目类别:
Standard Grant
Decoding the Extreme Physics of Ultrasound Generation in the Bat Larynx
解码蝙蝠喉中产生超声波的极端物理原理
- 批准号:
1806689 - 财政年份:2019
- 资助金额:
$ 15.17万 - 项目类别:
Continuing Grant
UNS: Coupled Flow-Chemistry Modeling of Thrombogensis in Human Ventricles
UNS:人心室血栓形成的耦合流化学模型
- 批准号:
1511200 - 财政年份:2015
- 资助金额:
$ 15.17万 - 项目类别:
Standard Grant
SCH: INT: Mapping the Cardiac Acousteome: Biosensing and Computational Modeling Applied to Smart Diagnosis and Monitoring of Heart Conditions
SCH:INT:绘制心脏声学组图:生物传感和计算模型应用于心脏病的智能诊断和监测
- 批准号:
1344772 - 财政年份:2013
- 资助金额:
$ 15.17万 - 项目类别:
Standard Grant
Collaborative Research: Pteropod Swimming Behavior as a Bio Assay for Ocean Acidification
合作研究:翼足类动物游泳行为作为海洋酸化的生物测定
- 批准号:
1246317 - 财政年份:2013
- 资助金额:
$ 15.17万 - 项目类别:
Continuing Grant
CDI Type-II: Collaborative Research: From Ion Channels to Blood Flow and Heart Sounds: A New Paradigm in Cyber-Enabled Multiphysical Analysis of Heart Function
CDI II 型:协作研究:从离子通道到血流和心音:网络支持的心脏功能多物理分析的新范式
- 批准号:
1124804 - 财政年份:2011
- 资助金额:
$ 15.17万 - 项目类别:
Standard Grant
Effect of Wing Deformation and Flexibility on the Aerodynamics of Insect Flight
翅膀变形和灵活性对昆虫飞行空气动力学的影响
- 批准号:
0943425 - 财政年份:2009
- 资助金额:
$ 15.17万 - 项目类别:
Standard Grant
Effect of Wing Deformation and Flexibility on the Aerodynamics of Insect Flight
翅膀变形和灵活性对昆虫飞行空气动力学的影响
- 批准号:
0828147 - 财政年份:2008
- 资助金额:
$ 15.17万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 15.17万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 15.17万 - 项目类别:
Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
- 批准号:
2313120 - 财政年份:2024
- 资助金额:
$ 15.17万 - 项目类别:
Standard Grant
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
- 批准号:
2312706 - 财政年份:2024
- 资助金额:
$ 15.17万 - 项目类别:
Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318855 - 财政年份:2024
- 资助金额:
$ 15.17万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
- 批准号:
2318940 - 财政年份:2024
- 资助金额:
$ 15.17万 - 项目类别:
Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
- 批准号:
2319097 - 财政年份:2024
- 资助金额:
$ 15.17万 - 项目类别:
Standard Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
- 批准号:
2319123 - 财政年份:2024
- 资助金额:
$ 15.17万 - 项目类别:
Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
- 批准号:
2319848 - 财政年份:2024
- 资助金额:
$ 15.17万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:CyberTraining:试点:PowerCyber:电力工程研究人员的计算培训
- 批准号:
2319895 - 财政年份:2024
- 资助金额:
$ 15.17万 - 项目类别:
Standard Grant