Decoding the Extreme Physics of Ultrasound Generation in the Bat Larynx
解码蝙蝠喉中产生超声波的极端物理原理
基本信息
- 批准号:1806689
- 负责人:
- 金额:$ 61.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ultrasonic call emissions with frequencies ranging up to 40-times those produced by human vocal cords; sound intensities that exceed that of a jet engine; subglottic pressures that would shred the human larynx to pieces; the highest tissue velocities found anywhere in nature; exquisite control of intensity and tone that would be the envy of any soprano; and call rates that are double that of the fastest machine gun. These are the capabilities that make the larynx of an echolocating bat one of the most extreme acoustic "instruments" in nature. This project will develop and employ a suite of scientific tools to gain a comprehensive understanding of the extreme physics that underlies the generation of ultrasound in the bat larynx. In addition to extending our understanding of a mammal that perceives the world in a way that is fundamentally distinct from most other mammals, particularly humans, the current research will explore a rich, coupled multiphysics problem that lies at the very edge of current scientific capabilities. Beyond the scientific advancement of elucidating the physics of ultrasound generation in bats, the broader impacts of the project span the fields of computational physics, bioinspired ultrasonic technologies, assistive technologies, vocal dysfunction, animal behavior and cyber-enabled science. The coupled aerodynamics, tissue mechanics and bioacoustics computational models developed here have a wide variety of applications in biophysics and engineering. The undergraduate and graduate trainees working on this project will become part of a new generation of scientists and engineers who can apply computation, experimental methods, and data-enabled science across disciplines to solve the most complex problems.The intellectual merits of the research span the areas of acoustics, biomechanics, aerodynamics, computational physics, nonlinear dynamics, data-enabled science and organismal biology. The science in this project is driven primarily by a first-of-its-kind, image-based, coupled aero-tissue-acoustic computational model of bat laryngeal function. In addition, sophisticated experimental tools, such as nano-indentation, micro-Computed Tomography and scanning electron microscopy for model parameterization, will be employed. Novel ex-vivo experiments to support the development and testing of these models will also be conducted. The specific objectives of the projects are (1) conduct ex-vivo analysis of vocal fold dynamics and acoustics in a vocalizing excised bat larynx; (2) conduct 3D imaging and biomechanical testing of a bat larynx for model development; (3) develop and validate a coupled aero-tissue-acoustics computational model for simulation and analysis of ultrasonic vocalization in the bat larynx; and finally (4) decode the physics of ultrasound generation using the validated aero-tissue-acoustic model. The topic of the current project has inherent appeal to high-school and university students, and the group will leverage this for a broad outreach to the wider community. This project is jointly funded by the Physics of Living Systems Program in the Division of Physics and the Physiological Mechanisms and Biomechanics Program of the Division of Integrative Organismal Systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
超声波发出的声音频率高达人类声带的40倍;声音强度超过喷气式发动机;声门下的压力会将人类喉咙撕成碎片;自然界中任何地方都能找到最高的组织速度;对强度和音调的精致控制会让任何女高音都羡慕不已;呼叫率是最快的机枪的两倍。这些能力使回声定位蝙蝠的喉部成为自然界中最极端的声学“乐器”之一。该项目将开发和使用一套科学工具,以全面了解蝙蝠喉部产生超声波的极端物理学。除了扩展我们对哺乳动物的理解,这种哺乳动物感知世界的方式与大多数其他哺乳动物,特别是人类,从根本上不同,目前的研究将探索一个丰富的,耦合的多物理问题,该问题处于当前科学能力的边缘。除了阐明蝙蝠超声波产生物理学的科学进步之外,该项目更广泛的影响还涵盖计算物理学、生物启发超声波技术、辅助技术、发声功能障碍、动物行为和网络科学等领域。耦合空气动力学,组织力学和生物声学计算模型在这里开发的生物物理和工程中有广泛的应用。参与该项目的本科生和研究生学员将成为新一代科学家和工程师的一部分,他们可以应用计算,实验方法和跨学科的数据支持科学来解决最复杂的问题。研究的智力价值跨越声学,生物力学,空气动力学,计算物理,非线性动力学,数据支持科学和生物生物学领域。该项目的科学主要由蝙蝠喉部功能的第一种基于图像的耦合空气组织声学计算模型驱动。此外,还将采用先进的实验工具,如纳米压痕、微型计算机断层扫描和扫描电子显微镜,用于模型参数化。 还将进行新的离体实验,以支持这些模型的开发和测试。这些项目的具体目标是:(1)对发声的切除蝙蝠喉中的声带动力学和声学进行离体分析;(2)对蝙蝠喉进行三维成像和生物力学测试,用于模型开发;(3)开发和验证耦合空气-组织-声学计算模型,用于模拟和分析蝙蝠喉中的超声发声;以及最后(4)使用经验证的空气-组织-声学模型解码超声生成的物理过程。目前项目的主题对高中和大学生具有内在的吸引力,该小组将利用这一点向更广泛的社区进行广泛的宣传。 该项目由物理学系生命系统物理学项目和综合有机系统系生理机制和生物力学项目共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Experimental Characterization of the Flow-Induced Flutter of a Suspended Elastic Membrane
- DOI:10.2514/1.j058600
- 发表时间:2020-01-01
- 期刊:
- 影响因子:2.5
- 作者:Dou, Zhongwang;Rips, Aaron;Mittal, Rajat
- 通讯作者:Mittal, Rajat
IMMERSED BOUNDARY METHODS FOR THERMOFLUIDS PROBLEMS
热流体问题的浸入边界法
- DOI:10.1615/annualrevheattransfer.2022041888
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Mittal, Rajat;Bhardwaj, Rajneesh
- 通讯作者:Bhardwaj, Rajneesh
Flutter-enhanced mixing in small-scale mixers
- DOI:10.1063/1.5115351
- 发表时间:2019-10-01
- 期刊:
- 影响因子:4.6
- 作者:Rips, Aaron;Mittal, Rajat
- 通讯作者:Mittal, Rajat
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rajat Mittal其他文献
A computational study of asymmetric glottal jet deflection during phonation.
发声过程中不对称声门射流偏转的计算研究。
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:2.4
- 作者:
Xudong Zheng;Rajat Mittal;Steven Bielamowicz - 通讯作者:
Steven Bielamowicz
Su1655 STOMACHSIM: AN <em>IN-SILICO</em> SIMULATOR OF GASTRIC BIOMECHANICS WITH APPLICATION TO PYLOROPLASTY
- DOI:
10.1016/s0016-5085(23)02492-7 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:
- 作者:
Sharun Kuhar;Jung-Hee Seo;Pankaj J. Pasricha;Rajat Mittal - 通讯作者:
Rajat Mittal
Recent developments in multiphysics computational models of physiological flows
- DOI:
10.1007/s00162-016-0381-1 - 发表时间:
2016-01-30 - 期刊:
- 影响因子:2.800
- 作者:
Jeff D. Eldredge;Rajat Mittal - 通讯作者:
Rajat Mittal
Extended Darcy–Forchheimer law including inertial flow deflection effects
扩展达西-福希海默定律,包括惯性流偏转效应
- DOI:
10.1017/jfm.2023.1083 - 发表时间:
2024 - 期刊:
- 影响因子:3.7
- 作者:
Mostafa Aghaei;J. Seo;Sasindu Pinto;Louis Cattafesta;C. Meneveau;Rajat Mittal - 通讯作者:
Rajat Mittal
A computational study of the effect of vocal-fold asymmetry on phonation.
声带不对称对发声影响的计算研究。
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:2.4
- 作者:
Q. Xue;Rajat Mittal;Xudong Zheng;Steven Bielamowicz - 通讯作者:
Steven Bielamowicz
Rajat Mittal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rajat Mittal', 18)}}的其他基金
Collaborative Research: Effective Face Masks to Mitigate COVID-19 Transmission: Insights from Multimodal Quantitative Analysis
合作研究:有效缓解 COVID-19 传播的口罩:多模态定量分析的见解
- 批准号:
2034983 - 财政年份:2020
- 资助金额:
$ 61.53万 - 项目类别:
Standard Grant
Multiphase Chemo-Fluid Dynamics in the Stomach: Computational Models with Applications to Gastric Digestion in Health and Disease
胃中的多相化学流体动力学:计算模型在健康和疾病中胃消化中的应用
- 批准号:
2019405 - 财政年份:2020
- 资助金额:
$ 61.53万 - 项目类别:
Standard Grant
UNS: Coupled Flow-Chemistry Modeling of Thrombogensis in Human Ventricles
UNS:人心室血栓形成的耦合流化学模型
- 批准号:
1511200 - 财政年份:2015
- 资助金额:
$ 61.53万 - 项目类别:
Standard Grant
EPRI: Collaborative Research: autoFlutter: Efficient, Waterless Power Plant Cooling
EPRI:合作研究:autoFlutter:高效、无水发电厂冷却
- 批准号:
1357819 - 财政年份:2014
- 资助金额:
$ 61.53万 - 项目类别:
Continuing Grant
SCH: INT: Mapping the Cardiac Acousteome: Biosensing and Computational Modeling Applied to Smart Diagnosis and Monitoring of Heart Conditions
SCH:INT:绘制心脏声学组图:生物传感和计算模型应用于心脏病的智能诊断和监测
- 批准号:
1344772 - 财政年份:2013
- 资助金额:
$ 61.53万 - 项目类别:
Standard Grant
Collaborative Research: Pteropod Swimming Behavior as a Bio Assay for Ocean Acidification
合作研究:翼足类动物游泳行为作为海洋酸化的生物测定
- 批准号:
1246317 - 财政年份:2013
- 资助金额:
$ 61.53万 - 项目类别:
Continuing Grant
CDI Type-II: Collaborative Research: From Ion Channels to Blood Flow and Heart Sounds: A New Paradigm in Cyber-Enabled Multiphysical Analysis of Heart Function
CDI II 型:协作研究:从离子通道到血流和心音:网络支持的心脏功能多物理分析的新范式
- 批准号:
1124804 - 财政年份:2011
- 资助金额:
$ 61.53万 - 项目类别:
Standard Grant
Effect of Wing Deformation and Flexibility on the Aerodynamics of Insect Flight
翅膀变形和灵活性对昆虫飞行空气动力学的影响
- 批准号:
0943425 - 财政年份:2009
- 资助金额:
$ 61.53万 - 项目类别:
Standard Grant
Effect of Wing Deformation and Flexibility on the Aerodynamics of Insect Flight
翅膀变形和灵活性对昆虫飞行空气动力学的影响
- 批准号:
0828147 - 财政年份:2008
- 资助金额:
$ 61.53万 - 项目类别:
Standard Grant
相似海外基金
Studying Transient X-ray Events as a Probe for Physics in Extreme Conditions
研究瞬态 X 射线事件作为极端条件下物理学的探针
- 批准号:
2892517 - 财政年份:2023
- 资助金额:
$ 61.53万 - 项目类别:
Studentship
Physics at the Black Hole Frontier: The McGill Extreme Gravity and Accretion Group
黑洞前沿的物理学:麦吉尔极端重力和吸积群
- 批准号:
RGPIN-2021-03702 - 财政年份:2022
- 资助金额:
$ 61.53万 - 项目类别:
Discovery Grants Program - Individual
Physics at the Black Hole Frontier: The McGill Extreme Gravity and Accretion Group
黑洞前沿的物理学:麦吉尔极端重力和吸积群
- 批准号:
RGPAS-2021-00021 - 财政年份:2022
- 资助金额:
$ 61.53万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Conference: Physics and Astrophysics at the Extreme (PAX) Workshop
会议:极限物理和天体物理学 (PAX) 研讨会
- 批准号:
2228849 - 财政年份:2022
- 资助金额:
$ 61.53万 - 项目类别:
Standard Grant
EXTREME PHYSICS AROUND BLACK HOLES: UNDERSTANDING ACCRETION-DISK PHYSICS AT THE EDGE OF THE BLACK-HOLE EVENT HORIZON
黑洞周围的极端物理:了解黑洞事件视界边缘的吸积盘物理
- 批准号:
2749923 - 财政年份:2022
- 资助金额:
$ 61.53万 - 项目类别:
Studentship
The extreme physics of spider pulsar binaries
蜘蛛脉冲星双星的极端物理
- 批准号:
2781479 - 财政年份:2022
- 资助金额:
$ 61.53万 - 项目类别:
Studentship
Probing Extreme (Astro)Physics with Neutron Stars
用中子星探索极限(天文)物理
- 批准号:
RGPIN-2018-06624 - 财政年份:2022
- 资助金额:
$ 61.53万 - 项目类别:
Discovery Grants Program - Individual
Physics and Chemistry of Planetary Materials under Extreme Pressure and Temperature Conditions
极端压力和温度条件下行星材料的物理和化学
- 批准号:
RGPIN-2019-06818 - 财政年份:2022
- 资助金额:
$ 61.53万 - 项目类别:
Discovery Grants Program - Individual
Nitrogen under Extreme Conditions: From Fundamental Physics to Novel Functional Materials
极端条件下的氮:从基础物理到新型功能材料
- 批准号:
MR/V025724/1 - 财政年份:2022
- 资助金额:
$ 61.53万 - 项目类别:
Fellowship
Development of the apparatus for measuring electric and magnetic properties of iron-based superconductors under complex extreme conditions and its application to the BCS-BEC crossover physics
复杂极端条件下铁基超导体电磁性能测量装置研制及其在BCS-BEC交叉物理中的应用
- 批准号:
22K03511 - 财政年份:2022
- 资助金额:
$ 61.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




