Sparse Solutions to Classes of Quadratic Programming Problems: Theoretical Fundamentals, Solving Strategies and Applications
二次规划问题类的稀疏解:理论基础、求解策略和应用
基本信息
- 批准号:1359548
- 负责人:
- 金额:$ 13.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-16 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research objective of this award is to characterize sparse solutions to optimization problems arising from applications such as image processing and portfolio selection. The primary goal is to develop a new theoretical framework that will establish the existence of sparse optimal or approximate solutions to classes of intractable and non-convex quadratic optimization problems and derive precise probabilistic characterization of the sparsity of the sparsest optimal or approximate solutions to the underlying optimization problem. These theoretical results will be validated via comprehensive numerical experiments. The exploited sparsity at the optimal solution will be used to design provably-good efficient algorithms for certain classes of quadratic optimization problems. The new algorithms developed in the project will be tested and compared with existing conventional approaches in the literature. If successful, the project will not only transform understanding of sparse solutions and help solve several long-standing open problems in portfolio theory and optimization, but also provide effective tools for solving classes of non-convex quadratic optimization problems that are at present computationally intractable. The tools developed through the project will have practical benefit in lowering investment risk via novel diversification techniques and in extracting meaningful patterns from different data sources.
该奖项的研究目标是描述图像处理和投资组合选择等应用中产生的优化问题的稀疏解决方案。主要目标是开发一个新的理论框架,将建立稀疏的最佳或近似解决方案的存在类的棘手和非凸二次优化问题,并获得精确的概率表征稀疏的最佳或近似解决方案的基本优化问题。这些理论结果将通过全面的数值实验进行验证。 利用稀疏性的最佳解决方案将被用来设计证明良好的有效算法,某些类的二次优化问题。该项目中开发的新算法将进行测试,并与文献中现有的传统方法进行比较。如果成功,该项目不仅将改变对稀疏解的理解,并帮助解决投资组合理论和优化中的几个长期存在的开放问题,还将为解决目前计算上难以解决的非凸二次优化问题提供有效的工具。 通过该项目开发的工具将通过新的多样化技术降低投资风险,并从不同的数据来源中提取有意义的模式,从而产生实际效益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiming Peng其他文献
A new theoretical framework for K-means-type clustering
K-means型聚类的新理论框架
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Jiming Peng;Yu Xia - 通讯作者:
Yu Xia
New biconvex optimization for planning of battery energy storage systems
- DOI:
10.1007/s10589-025-00673-0 - 发表时间:
2025-03-13 - 期刊:
- 影响因子:2.000
- 作者:
Ang Li;Jiming Peng;Lei Fan - 通讯作者:
Lei Fan
Unveiling the Synthetic Potential of Conjugated Organic Molecule as Efficient Photo-catalytic Trifluoromethylation and Photo-cocatalytic C–N Coupling Reaction
- DOI:
10.1007/s10562-024-04900-x - 发表时间:
2025-01-03 - 期刊:
- 影响因子:2.400
- 作者:
Yumin Pan;Tingting Xie;Jiming Peng;Cuihui Cao;Bi-Qun Zou - 通讯作者:
Bi-Qun Zou
A Global Algorithm for the Worst-case Linear Optimization under Uncertainties
不确定性下最坏情况线性优化的全局算法
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Hezhi Luo;Xiaodong Ding;Duan Li;Jiming Peng - 通讯作者:
Jiming Peng
A dynamic large-update primal‐dual interior-point method for linear optimization
线性优化的动态大更新原对偶内点法
- DOI:
10.1080/1055678021000039175 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Jiming Peng;T. Terlaky - 通讯作者:
T. Terlaky
Jiming Peng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiming Peng', 18)}}的其他基金
Alternate Direction Method: A New Recipe for Non-Convex Quadratic Programming with Applications
交替方向法:非凸二次规划的新方法及其应用
- 批准号:
1537712 - 财政年份:2015
- 资助金额:
$ 13.27万 - 项目类别:
Standard Grant
Sparse Solutions to Classes of Quadratic Programming Problems: Theoretical Fundamentals, Solving Strategies and Applications
二次规划问题类的稀疏解:理论基础、求解策略和应用
- 批准号:
1131690 - 财政年份:2011
- 资助金额:
$ 13.27万 - 项目类别:
Standard Grant
0-1 Semidefinite Programming: Modeling, Theoretical Foundation, Resolution and Applications
0-1半定规划:建模、理论基础、解析和应用
- 批准号:
0915240 - 财政年份:2009
- 资助金额:
$ 13.27万 - 项目类别:
Standard Grant
相似海外基金
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
$ 13.27万 - 项目类别:
Studentship
Microbiome applications and technological hubs as solutions to minimize food loss and waste - FOODGUARD
微生物组应用和技术中心作为减少粮食损失和浪费的解决方案 - FOODGUARD
- 批准号:
10094820 - 财政年份:2024
- 资助金额:
$ 13.27万 - 项目类别:
EU-Funded
Techno-economic Feasibility Study of ClimaHtech innovative clean maritime solutions
ClimaHtech 创新清洁海事解决方案的技术经济可行性研究
- 批准号:
10098100 - 财政年份:2024
- 资助金额:
$ 13.27万 - 项目类别:
Collaborative R&D
Digital Solutions For Accelerated Battery Testing
加速电池测试的数字解决方案
- 批准号:
10107050 - 财政年份:2024
- 资助金额:
$ 13.27万 - 项目类别:
EU-Funded
An Integrated Life-course Approach for Person-centred Solutions and Care for Ageing with Multi-morbidity in the European Regions - STAGE; Stay Healthy Through Ageing
欧洲地区以人为本的解决方案和针对多种疾病的老龄化护理的综合生命全程方法 - STAGE;
- 批准号:
10112787 - 财政年份:2024
- 资助金额:
$ 13.27万 - 项目类别:
EU-Funded
RestoreDNA: Development of scalable eDNA-based solutions for biodiversity regulators and nature-related disclosure
RestoreDNA:为生物多样性监管机构和自然相关披露开发可扩展的基于 eDNA 的解决方案
- 批准号:
10086990 - 财政年份:2024
- 资助金额:
$ 13.27万 - 项目类别:
Collaborative R&D
Developing solutions for temperature-related health impacts in the UK
为英国与温度相关的健康影响开发解决方案
- 批准号:
NE/Y503253/1 - 财政年份:2024
- 资助金额:
$ 13.27万 - 项目类别:
Research Grant
Engineering Nature-based Solutions to Tackle Antimicrobial Resistance
工程基于自然的解决方案来解决抗菌素耐药性
- 批准号:
EP/Y003101/1 - 财政年份:2024
- 资助金额:
$ 13.27万 - 项目类别:
Research Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 13.27万 - 项目类别:
Standard Grant
Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
- 批准号:
2342574 - 财政年份:2024
- 资助金额:
$ 13.27万 - 项目类别:
Standard Grant