Ramification, Multiplicity, and Volume
分支、多重性和体积
基本信息
- 批准号:1360564
- 负责人:
- 金额:$ 24.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will investigate several key problems in algebraic geometry and related areas of mathematics. Algebraic geometry is the study of solutions to polynomial equations; it has many applications in other areas of mathematics and other sciences. The project will focus on algebraic transformations over arbitrary fields, which has potential for practical application in computer science. The research involves graduate students and postdoctoral researchers at the University of Missouri.This project is research in the areas of commutative algebra, algebraic geometry, valuation theory, and singularity theory. The problems that are being investigated are in four basic areas: Asymptotic multiplicities and Hilbert polynomials of graded families of ideals in a local ring, understanding better the cone of effective divisors modulo numerical equivalence (inradius, outradius and volume), toroidalization of morphisms (after blowing up nonsingular subvarieties make a morphism locally have a monomial like structure) and ramification, the defect and local uniformization. This last part involves better understanding ramification along a valuation in positive characteristic, with a view towards resolution of singularities.
本专题将探讨代数几何及相关数学领域的几个关键问题。 代数几何是研究多项式方程的解的学科;它在数学和其他科学的其他领域有许多应用。 该项目将重点关注任意域上的代数变换,这在计算机科学中具有实际应用的潜力。 该研究涉及密苏里州大学的研究生和博士后研究人员。该项目是交换代数、代数几何、赋值理论和奇点理论等领域的研究。正在调查的问题是在四个基本领域:渐近多重性和希尔伯特多项式的分级家庭的理想在一个地方环,更好地了解锥的有效因子模数值等价(inradius,antridius和体积),toroidalization态射(后炸毁非奇异子品种使态射当地有一个单项式的结构)和分歧,缺陷和当地的一致化。这最后一部分涉及到更好地理解分支沿着一个估值的积极特点,以期对决议的奇异性。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Local monomialization of analytic maps
解析图的局部单项化
- DOI:10.1016/j.aim.2016.11.023
- 发表时间:2017
- 期刊:
- 影响因子:1.7
- 作者:Cutkosky, Steven Dale
- 通讯作者:Cutkosky, Steven Dale
The role of defect and splitting in finite generation of extensions of associated graded rings along a valuation
缺陷和分裂在相关分级环沿评估的扩展的有限生成中的作用
- DOI:10.2140/ant.2017.11.1461
- 发表时间:2017
- 期刊:
- 影响因子:1.3
- 作者:Cutkosky, Steven
- 通讯作者:Cutkosky, Steven
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Cutkosky其他文献
Steven Cutkosky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Cutkosky', 18)}}的其他基金
Conference: Resolution of Singularities, Valuation Theory and Related Topics
会议:奇点的解决、估值理论及相关主题
- 批准号:
2422557 - 财政年份:2024
- 资助金额:
$ 24.01万 - 项目类别:
Standard Grant
Interaction of Commutative Algebra, Valuations, and Geometry
交换代数、估值和几何的相互作用
- 批准号:
2054394 - 财政年份:2021
- 资助金额:
$ 24.01万 - 项目类别:
Continuing Grant
Resolution of Singularities, Valuation Theory and Related Topics
奇点的解决、估值理论及相关主题
- 批准号:
2002403 - 财政年份:2020
- 资助金额:
$ 24.01万 - 项目类别:
Standard Grant
Topics in Commutative Algebra, Singularities, and Valuations
交换代数、奇点和估值主题
- 批准号:
1700046 - 财政年份:2017
- 资助金额:
$ 24.01万 - 项目类别:
Continuing Grant
Singularity Theory and Commutative Algebra
奇点理论和交换代数
- 批准号:
1064425 - 财政年份:2011
- 资助金额:
$ 24.01万 - 项目类别:
Standard Grant
Topics in Singularity Theory and Commutative Algebra
奇点理论和交换代数专题
- 批准号:
0754208 - 财政年份:2008
- 资助金额:
$ 24.01万 - 项目类别:
Continuing Grant
Summer School and Conference on Valuation theory and Integral Closures in Commutative Algebra
交换代数中的估值理论和积分闭包暑期学校和会议
- 批准号:
0604308 - 财政年份:2006
- 资助金额:
$ 24.01万 - 项目类别:
Standard Grant
相似海外基金
SHF: Medium: Reasoning about Multiplicity in the Machine Learning Pipeline
SHF:Medium:机器学习管道中多重性的推理
- 批准号:
2402833 - 财政年份:2024
- 资助金额:
$ 24.01万 - 项目类别:
Continuing Grant
Genetic and biophysical mechanisms that control influenza virus cellular multiplicity of infection
控制流感病毒细胞感染多重性的遗传和生物物理机制
- 批准号:
10659426 - 财政年份:2023
- 资助金额:
$ 24.01万 - 项目类别:
Postdoctoral Fellowship: AAPF: From Dense Clusters to OB Associations: Tracing the Impact of Dynamics on Multiplicity beyond 10 AU in the Orion Complex
博士后奖学金:AAPF:从密集星团到 OB 关联:追踪动态对猎户座复合体 10 个天文单位以上多重性的影响
- 批准号:
2303911 - 财政年份:2023
- 资助金额:
$ 24.01万 - 项目类别:
Fellowship Award
The "Double M" Project: The Impact of Magnetism and Multiplicity on the Evolution of Massive Stars
“双M”项目:磁性和多重性对大质量恒星演化的影响
- 批准号:
23K19071 - 财政年份:2023
- 资助金额:
$ 24.01万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Elucidating spin-multiplicity-dependent excited-state dynamics of luminescent multiradicals
阐明发光多自由基的自旋多重性依赖的激发态动力学
- 批准号:
23K04699 - 财政年份:2023
- 资助金额:
$ 24.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Transformation of Corporate Behavior Model and Revitalization of Management Accounting Techniques Using Multiplicity of Valuation Axes and Probability Valuation
利用多重估值轴和概率估值实现企业行为模型的转变和管理会计技术的振兴
- 批准号:
23K01668 - 财政年份:2023
- 资助金额:
$ 24.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
TOPOLOGY OF SOBOLEV SPACES AND QUASICONVEXITY: MULTIPLICITY AND SINGULARITY ANALYSIS FOR EXTREMALS AND LOCAL MINIMIZERS
Sobolev空间拓扑和拟凸性:极值和局部极小值的多重性和奇异性分析
- 批准号:
EP/V027115/1 - 财政年份:2022
- 资助金额:
$ 24.01万 - 项目类别:
Research Grant
High Multiplicity Strip Packing
高多样性带状包装
- 批准号:
548083-2020 - 财政年份:2022
- 资助金额:
$ 24.01万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A Compactness Analysis for Critical Elliptic Equations of the Caffarelli-Kohn-Nirenberg Type and Applications to Questions of Existence and Multiplicity
Caffarelli-Kohn-Nirenberg型临界椭圆方程的紧致性分析及其在存在性和多重性问题中的应用
- 批准号:
546917-2020 - 财政年份:2022
- 资助金额:
$ 24.01万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Algorithms for multiplicity matrices in local representation theory
局部表示论中的重数矩阵算法
- 批准号:
574711-2022 - 财政年份:2022
- 资助金额:
$ 24.01万 - 项目类别:
University Undergraduate Student Research Awards