Topics in Singularity Theory and Commutative Algebra
奇点理论和交换代数专题
基本信息
- 批准号:0754208
- 负责人:
- 金额:$ 20.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2013-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cutkosky will investigate four projects: toroidalization, local monomialization and ramification of surfaces in positive characteristic, asymptotic properties of powers of ideals and semigroups of valuations on local rings. In toroidalization, the main conjecture is to show that any dominant morphismof varieties can be made into a toroidal mapping, or a local monomial mapping, by blowing up nonsingular subvarieties in the domain and range. Cutkosky will extend his recent work proving the conjecture for 3-folds,towards a general proof of the conjecture. On the problem of ramification in positive characteristic,the proposer has found with Oliver Piltant stable forms of mappings between germs of characteristic p surfaces.Cutkosky proposes to refine the formulation of these forms, and apply them to a study of ramification of maps of surfaces in characteristic p. Cutkosky will continue his work on computing asymptotic properties of Hilbert type functions on functors of powers of ideals. Cutkosky also seeks to understand the semigroups which canoccur as the value semigroup of a (possible noetherian) valuation dominating a noetherian local domain.Algebra is of increasing importance in modern science and technology. Cutkosky will investigateseveral problems of theoretical importance in the general area of Commutative Algebra and Algebraic Geometry.The main objective is to understand the structure of polynomial mappings, and systems of polynomial equations. Cutkosky will train undergraduate and graduate students, and mentor young researchers through this project.
Cutkosky将研究四个项目:toroidalization,局部单单性化和分歧的表面在积极的特征,渐近性质的权力的理想和半群的估值局部环。 在环面化中,主要的猜想是证明任何簇的支配态射都可以通过爆破定义域和值域中的非奇异子簇而成为一个环面映射或一个局部单项式映射。Cutkosky将扩展他最近的工作证明猜想的3倍,对一个一般的证明猜想。在正特征的分歧问题上,提出者与奥利弗一起发现了特征p曲面芽之间映射的稳定形式。Cutkosky提出改进这些形式的公式,并将其应用于特征p曲面映射的分歧研究。Cutkosky将继续他的工作,计算Hilbert型函数关于理想幂的函子的渐近性质。Cutkosky还试图理解半群,它可以作为一个(可能的Noether)赋值控制一个Noether局部区域的值半群出现。代数在现代科学和技术中越来越重要。Cutkosky将研究交换代数和代数几何一般领域中的几个理论重要性问题。主要目标是了解多项式映射的结构和多项式方程组。卡特科斯基会 通过这个项目培训本科生和研究生,并指导年轻的研究人员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Cutkosky其他文献
Steven Cutkosky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Cutkosky', 18)}}的其他基金
Conference: Resolution of Singularities, Valuation Theory and Related Topics
会议:奇点的解决、估值理论及相关主题
- 批准号:
2422557 - 财政年份:2024
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant
Interaction of Commutative Algebra, Valuations, and Geometry
交换代数、估值和几何的相互作用
- 批准号:
2054394 - 财政年份:2021
- 资助金额:
$ 20.7万 - 项目类别:
Continuing Grant
Resolution of Singularities, Valuation Theory and Related Topics
奇点的解决、估值理论及相关主题
- 批准号:
2002403 - 财政年份:2020
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant
Topics in Commutative Algebra, Singularities, and Valuations
交换代数、奇点和估值主题
- 批准号:
1700046 - 财政年份:2017
- 资助金额:
$ 20.7万 - 项目类别:
Continuing Grant
Ramification, Multiplicity, and Volume
分支、多重性和体积
- 批准号:
1360564 - 财政年份:2014
- 资助金额:
$ 20.7万 - 项目类别:
Continuing Grant
Singularity Theory and Commutative Algebra
奇点理论和交换代数
- 批准号:
1064425 - 财政年份:2011
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant
Summer School and Conference on Valuation theory and Integral Closures in Commutative Algebra
交换代数中的估值理论和积分闭包暑期学校和会议
- 批准号:
0604308 - 财政年份:2006
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant
相似海外基金
Mathematical innovations woven by singularity theory and geometric topology
奇点理论和几何拓扑编织的数学创新
- 批准号:
23H05437 - 财政年份:2023
- 资助金额:
$ 20.7万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
New development of Newton's method in singularity theory
奇点理论中牛顿法的新发展
- 批准号:
23K03106 - 财政年份:2023
- 资助金额:
$ 20.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Commutative Ring theory using tools of Singularity Theory
使用奇点理论工具的交换环理论
- 批准号:
23K03040 - 财政年份:2023
- 资助金额:
$ 20.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Singularity theory in mixed characteristic and its applications to the theory of F-singularities and birational geometry
混合特性奇异性理论及其在F-奇异性和双有理几何理论中的应用
- 批准号:
22H01112 - 财政年份:2022
- 资助金额:
$ 20.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Cross-disciplinary fusion of singular phenomena by singularity theory
奇点理论对奇点现象的跨学科融合
- 批准号:
22KK0034 - 财政年份:2022
- 资助金额:
$ 20.7万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
CAREER: New Frontiers for Frobenius, Singularity Theory, Differential Operators, and Local Cohomology
职业生涯:弗罗贝尼乌斯、奇点理论、微分算子和局部上同调的新领域
- 批准号:
1945611 - 财政年份:2020
- 资助金额:
$ 20.7万 - 项目类别:
Continuing Grant
How is singularity theory applied to mathematics such as surface theory
奇点理论如何应用于表面理论等数学
- 批准号:
19K03486 - 财政年份:2019
- 资助金额:
$ 20.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developments and Applications of Geometric Singularity Theory
几何奇点理论的发展与应用
- 批准号:
19K03458 - 财政年份:2019
- 资助金额:
$ 20.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The minimal model theory for higher-dimensional algebraic varieties and singularity theory
高维代数簇的极小模型理论和奇点理论
- 批准号:
19J00046 - 财政年份:2019
- 资助金额:
$ 20.7万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Understanding exotic spheres from the viewpoint of global singularity theory of smooth maps
从光滑映射全局奇点理论的角度理解奇异球体
- 批准号:
18F18752 - 财政年份:2018
- 资助金额:
$ 20.7万 - 项目类别:
Grant-in-Aid for JSPS Fellows