TOPOLOGY OF SOBOLEV SPACES AND QUASICONVEXITY: MULTIPLICITY AND SINGULARITY ANALYSIS FOR EXTREMALS AND LOCAL MINIMIZERS

Sobolev空间拓扑和拟凸性:极值和局部极小值的多重性和奇异性分析

基本信息

  • 批准号:
    EP/V027115/1
  • 负责人:
  • 金额:
    $ 55.89万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

The central problem in the calculus of variations is to minimize a given function (often called functional or energy) globally or locally over a given space. This can range from the problem of finding the shortest path joining two points on a given surface to the problem of finding the director field in a liquid crystal having minimum total energy. When one attempts to systematically investigate questions of this type it becomes increasingly important not only to find a minimizer [if exists] but also to study the full set of such minimizers and its key properties, e.g., how large it is: finite or infinite? Does it entail certain symmetries? It is in addressing questions of this type that one is immediately led to investiage the way and form in which the energy and the underlying space interact with one-another globally (this brings in the mathematical concept of topology). A particular class of problems that the proposed research directly relates to arise in nonlinear theory of elasticity. Here the response of an elastic material when subjected to external excitations [applied forces or boundary displacements] is described through minimization of the elastic energy which is defined over the infinte dimensional space of all possible deformations. Equilibrium states then correspond to various classes of minimizers (global or local in suitable norms) or extremals (which merely make the energy stationary along all hypothetical variations). Being elastic means that the energy functional directly depends not on the deformation itself but on the deformation gradient (that at each spatial point is a 3 X3 matrix). The particular choice of the material (e.g., metal vs. rubber) enters only through the constitutive assumptions dictating and affecting the choice of the stored energy density (that is a function on the latter space of matrices). To make a successful modelling and analysis it is very important that the properties of the stored energy density reflect and are fully aligned with physics and not simplified for the sake of convenient and easy mathematics. This when ignored will have grave consequences in the study of questions relating to multiplicity of equilibrium states, exchange of stability (e.g. in problems of buckling and hysteresis), dynamic stability, formation and nature of singularities (e.g. fracture and cavitation), etc. It turns out that the general framework for which these stored energy densities should fall into is that of quasiconvexity discovered and introduced by Morrey through the apparently independent route of studying lower semicontinuity in suitable weak topologies in calculus of variations. Unfortunately despite the intensive investigations in the past 60 years in the calculus of variations supplemented by the discovery of the tight relation between quasiconvexity and constitutive assumptions on elastic materials about 40 years ago, quasiconvexity still is poorly understood and very few genuine examples of such functions are known to us. The situation is partly due to the peculiar way in which quasiconvexity is defined and partly due to having no efficient way of deciding whether a given function is quasiconvex or not. It is thus fair to say that as such quasiconvexity truely remains a mysterious property! The purpose of this research is to investigate this notion further and address some of the open problems that lie at its heart. This will be combined with a systematic study of the topologies of the underlying spaces of orientation-preserving and volume-preserving maps that are of massive importance not only in elasticity theory but in function theory, geometry and analysis. It is expected that the results of this investigation will lead to devising new methods and techniques in handling questions on quasiconvexity, regularity theory and topology and will open new frontiers in the subject. On a larger scale this will be of great interest to applied mathematicians, material scientists, and biologists.
变分法的核心问题是在给定的空间上全局或局部地最小化给定的函数(通常称为泛函或能量)。这可以从找到连接给定表面上的两个点的最短路径的问题到找到具有最小总能量的液晶中的指向矢场的问题。当一个人试图系统地研究这类问题时,不仅要找到极小化器(如果存在的话),而且要研究这类极小化器的全集及其关键性质,例如,它有多大:有限还是无限?它是否包含某些对称性?正是在解决这类问题时,人们立即被引导去研究能量和底层空间在全球范围内相互作用的方式和形式(这就引入了拓扑学的数学概念)。一类特殊的问题,提出的研究直接涉及到出现在非线性弹性理论。在这里,弹性材料在受到外部激励[施加的力或边界位移]时的响应是通过最小化弹性能量来描述的,该弹性能量定义在所有可能变形的无限维空间上。平衡态则对应于各种类型的极小值(在适当的范数下是全局的或局部的)或极值(它们仅仅使能量沿沿着所有假设的变化保持平稳)。弹性意味着能量泛函不直接依赖于变形本身,而是依赖于变形梯度(在每个空间点处是3 × 3矩阵)。材料的特定选择(例如,金属对橡胶)仅通过规定和影响存储能量密度(其是后一矩阵空间上的函数)的选择的本构假设而进入。为了进行成功的建模和分析,非常重要的是,所存储的能量密度的性质反映并与物理学完全一致,而不是为了方便和简单的数学而简化。如果忽视这一点,就会对平衡态的多重性、稳定性的交换等问题的研究产生严重的后果。(例如,在屈曲和滞后问题中)、动态稳定性、奇异点的形成和性质(例如断裂和气蚀),结果表明,这些存储能量密度应该落入的一般框架是由Morrey发现并引入的准凸性通过在变分学中研究适当弱拓扑中的下连续性这一明显独立的途径,不幸的是,尽管在过去的60年里,在变分法中进行了深入的研究,并在大约40年前发现了弹性材料的拟凸性和本构假设之间的紧密关系,但对拟凸性的理解仍然很差,我们知道的这种函数的真正例子很少。这种情况部分是由于拟凸性定义的特殊方式,部分是由于没有有效的方法来决定一个给定的函数是否是拟凸的。因此,可以公平地说,这样的拟凸性确实仍然是一个神秘的性质!本研究的目的是进一步研究这一概念,并解决一些悬而未决的问题,在其心脏。这将与系统研究的基本空间的拓扑结构的方向保持和体积保持的地图,是巨大的重要性,不仅在弹性理论,但在功能理论,几何和分析相结合。预计这项调查的结果将导致设计新的方法和技术在处理问题的拟凸性,正则性理论和拓扑结构,并将开辟新的前沿课题。在更大的范围内,这将是应用数学家,材料科学家和生物学家的极大兴趣。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gradient estimates for a nonlinear parabolic equation on smooth metric measure spaces with evolving metrics and potentials
  • DOI:
    10.1016/j.na.2023.113255
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Taheri;Vahideh Vahidifar
  • 通讯作者:
    A. Taheri;Vahideh Vahidifar
Gradient estimates for nonlinear elliptic equations involving the Witten Laplacian on smooth metric measure spaces and implications
  • DOI:
    10.1515/anona-2022-0288
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    A. Taheri;Vahideh Vahidifar
  • 通讯作者:
    A. Taheri;Vahideh Vahidifar
On multiple solutions to a family of nonlinear elliptic systems in divergence form coupled with an incompressibility constraint
  • DOI:
    10.1016/j.na.2022.112889
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Taheri;Vahideh Vahidifar
  • 通讯作者:
    A. Taheri;Vahideh Vahidifar
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ali Taheri其他文献

Multiple scattering of an acoustic wave from a network of cylindrical rods encased in a solid viscoelastic medium
  • DOI:
    10.1016/j.ultras.2015.07.015
  • 发表时间:
    2016-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ali Taheri;Farhang Honarvar
  • 通讯作者:
    Farhang Honarvar
Erratum to: “Synthesis of high aspect ratio ZnO nanowires with an inexpensive handcrafted electrochemical setup”
  • DOI:
    10.1134/s1063774517100017
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Ali Taheri;Shahyar Saramad;Saeed Setayeshi
  • 通讯作者:
    Saeed Setayeshi
Global Trend of Breast Cancer Among Women Aged 55 and Older From 2010 to 2019: An Analysis by Socio-Demographic Index and Geographic Regions
  • DOI:
    10.1007/s40944-025-00977-3
  • 发表时间:
    2025-02-14
  • 期刊:
  • 影响因子:
    0.400
  • 作者:
    Fatemeh Rezaei;Afrooz Mazidimoradi;Zahra Pasokh;Farzaneh Mobasheri;Ali Taheri;Fariba Shahraki-Sanavi;Zahra Shahabinia;Leila Allahqoli;Hamid Salehiniya
  • 通讯作者:
    Hamid Salehiniya
Enhancing the pharmacokinetics of abiraterone acetate through lipid-based formulations: addressing solubility and food effect challenges
  • DOI:
    10.1007/s13346-024-01755-y
  • 发表时间:
    2024-11-29
  • 期刊:
  • 影响因子:
    5.500
  • 作者:
    Ali Taheri;Ruba Almasri;Anthony Wignall;Hayley B. Schultz;Aurelia S. Elz;Amin Ariaee;Kristen E. Bremmell;Paul Joyce;Clive A. Prestidge
  • 通讯作者:
    Clive A. Prestidge

Ali Taheri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ali Taheri', 18)}}的其他基金

Excellence in Research: 2D Heterostructure Materials Based CRISPR Sensors for Detection of Salmonella and its serotypes
卓越研究:基于 2D 异质结构材料的 CRISPR 传感器,用于检测沙门氏菌及其血清型
  • 批准号:
    2301461
  • 财政年份:
    2023
  • 资助金额:
    $ 55.89万
  • 项目类别:
    Standard Grant

相似国自然基金

度量空间上Sobolev 函数的迹及其应用
  • 批准号:
    2024JJ6299
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
分数阶变阶变指数Sobolev空间理论及其应用-椭圆型PDE的边值问题
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
Fock-Sobolev空间上的算子与算子代数
  • 批准号:
    12371127
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
几类上半空间精确Hardy-Littlewood-Sobolev型积分不等式
  • 批准号:
    12371119
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
有限扭曲同胚及Sobolev同胚的弱极限
  • 批准号:
    12301111
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
复平面的最优Sobolev同胚延拓问题研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
可积系统在加权Sobolev初值下整体解的存在性和渐近性---RH方法
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
关于Orlicz-Sobolev空间嵌入若干问题的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
带位势的Sobolev临界或超临界Schrödinger方程(组)正规化解及其性态研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    29 万元
  • 项目类别:
    地区科学基金项目
相关于容量的分数次Sobolev型函数空间实变理论及其应用
  • 批准号:
    12271232
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
  • 批准号:
    2309779
  • 财政年份:
    2023
  • 资助金额:
    $ 55.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
  • 批准号:
    2309780
  • 财政年份:
    2023
  • 资助金额:
    $ 55.89万
  • 项目类别:
    Standard Grant
Quasiconformal and Sobolev mappings on metric measure spaces
度量测度空间上的拟共形映射和 Sobolev 映射
  • 批准号:
    22K13947
  • 财政年份:
    2022
  • 资助金额:
    $ 55.89万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Sobolev-Orlicz embedding theorems for Dirichlet spaces and their probabilistic interpretation
Dirichlet 空间的 Sobolev-Orlicz 嵌入定理及其概率解释
  • 批准号:
    21K20326
  • 财政年份:
    2021
  • 资助金额:
    $ 55.89万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Partial differential equations in generalized Sobolev spaces
广义 Sobolev 空间中的偏微分方程
  • 批准号:
    405603184
  • 财政年份:
    2019
  • 资助金额:
    $ 55.89万
  • 项目类别:
    Research Grants
Banach Spaces with a Focus on Sobolev-Style Spaces, Frame Theory, and Quantum Graphs
Banach 空间,重点关注 Sobolev 式空间、框架理论和量子图
  • 批准号:
    1900985
  • 财政年份:
    2019
  • 资助金额:
    $ 55.89万
  • 项目类别:
    Standard Grant
Compact Embeddings of Matrix Weighted Sobolev Spaces
矩阵加权 Sobolev 空间的紧嵌入
  • 批准号:
    508468-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 55.89万
  • 项目类别:
    University Undergraduate Student Research Awards
Approximation and Orthogonality in Sobolev Spaces
索博列夫空间中的逼近和正交性
  • 批准号:
    1510296
  • 财政年份:
    2015
  • 资助金额:
    $ 55.89万
  • 项目类别:
    Standard Grant
Study of nonlinear dispersive equations in critical Sobolev spaces
临界Sobolev空间中非线性色散方程的研究
  • 批准号:
    25800077
  • 财政年份:
    2013
  • 资助金额:
    $ 55.89万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Sobolev spaces in analysis and geometry
分析和几何中的索博列夫空间
  • 批准号:
    1161425
  • 财政年份:
    2012
  • 资助金额:
    $ 55.89万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了