Orthogonal Polynomials and Random Matrices
正交多项式和随机矩阵
基本信息
- 批准号:1362208
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-15 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It was the physicist Eugene Wigner who in the 1950's first used eigenvalues of random matrices to model the interactions of neutrons for heavy nuclei. Random matrices have since become a major research area with connections to mathematical physics, probability theory, number theory, numerical analysis, and orthogonal polynomials. Indeed, there is a well known anecdote about an interaction in the early 1970's between the physicist Freeman Dyson, and number theorist Hugh Montgomery, at Princeton, where their discussions led to the realization that there is a link between random matrices and the Riemann Zeta function of number theory. The PI's focus is on "universal" behavior of these random matrices: certain features seem to be independent of almost any underlying assumption, and consequently hold very generally. This has been known for a long time, and has been explored by both mathematical physicists and pure mathematicians. The techniques that have been developed to study this "universality" have been useful in many other areas of mathematics. This proposal will develop appropriate tools from orthogonal polynomials and classical analysis, and use these to establish "universal" features in as great a generality as possible. There will be also be an educational component to the project, involving collaboration with other researchers, organization of conferences, editorial duties, and supervision of undergraduate and/or graduate students.The specific goals of the project include investigating the ramifications and generalizations of a variational property recently established by the PI. It is hoped that this will enable one to establish universality limits for Hermitian ensembles under minimal conditions on measures with compact support, and also for varying measures. Monotonicity in the measure, and techniques of orthogonal polynomials are key tools in this approach. Somewhat more ambitious is the goal of extending the variational principle to beta-ensembles. This will include asymptotics of generalized Christoffel functions involving alternating polynomials in several variables. Discrete analogues will also be studied. Another major goal is developing the theory of Dirichlet orthogonal polynomials, and investigating their application to the Lindelof hypothesis for the Riemann Zeta function. Additional goals include investigating biorthogonal polynomials, and related numerical quadratures; orthogonal polynomials on curves in the plane, and Pade approximations.
物理学家尤金·维格纳(Eugene Wigner)在20世纪50年代首次使用随机矩阵的特征值来模拟重核中子的相互作用。随机矩阵已经成为一个主要的研究领域,与数学物理,概率论,数论,数值分析和正交多项式的联系。事实上,有一个众所周知的轶事是关于20世纪70年代早期物理学家弗里曼·戴森和数论家休·蒙哥马利在普林斯顿的一次互动,他们的讨论使他们认识到随机矩阵和数论的黎曼ζ函数之间存在联系。PI的重点是这些随机矩阵的“普遍”行为:某些特征似乎独立于几乎任何潜在的假设,因此非常普遍。这一点早已为人所知,数学物理学家和纯数学家都对此进行了探索。研究这种“普遍性”的技术在数学的许多其他领域都很有用。本提案将从正交多项式和经典分析中开发适当的工具,并使用这些工具来建立尽可能广泛的“通用”特征。该项目还将包括教育方面的内容,包括与其他研究人员的合作、会议的组织、编辑职责以及对本科生和/或研究生的监督。该项目的具体目标包括调查PI最近建立的变分性质的分支和概括。希望这将使人们能够在最小条件下,在紧支持的测度上,以及在变测度上,建立厄米综的普适性极限。测度的单调性和正交多项式技术是该方法的关键工具。更雄心勃勃的目标是将变分原理扩展到β -系综。这将包括在几个变量中涉及交替多项式的广义克里斯托费尔函数的渐近性。离散类似物也将被研究。另一个主要目标是发展狄利克雷正交多项式理论,并研究它们在黎曼ζ函数的林德洛夫假设中的应用。其他目标包括研究双正交多项式和相关的数值正交;平面上曲线上的正交多项式,以及帕德近似。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Doron Lubinsky其他文献
Doron Lubinsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Doron Lubinsky', 18)}}的其他基金
Multipoint Pade Approximation, Orthogonal Polynomials, and Random Matrices
多点 Pade 近似、正交多项式和随机矩阵
- 批准号:
1800251 - 财政年份:2018
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
2017 Computational Methods and Function Theory Conference
2017年计算方法与函数理论会议
- 批准号:
1713763 - 财政年份:2017
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Universality Limits, Orthogonal Polynomials and Spaces of Entire Functions
普适性极限、正交多项式和全函数空间
- 批准号:
1001182 - 财政年份:2010
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Universality Limits, Orthogonal Polynomials and Weighted Polynomial Approximation
普适性极限、正交多项式和加权多项式近似
- 批准号:
0700427 - 财政年份:2007
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Bernstein Constants, Orthogonal Polynomials and Pade Approximation
伯恩斯坦常数、正交多项式和 Pade 近似
- 批准号:
0400446 - 财政年份:2004
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Constructive Functions Tech-04: An International Conference
构造函数 Tech-04:国际会议
- 批准号:
0411729 - 财政年份:2004
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
相似海外基金
Random structures in high dimensions: Matrices, polynomials and point processes
高维随机结构:矩阵、多项式和点过程
- 批准号:
2246624 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Multipoint Pade Approximation, Orthogonal Polynomials, and Random Matrices
多点 Pade 近似、正交多项式和随机矩阵
- 批准号:
1800251 - 财政年份:2018
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Extreme value statistics of characteristic polynomials of random matrices and the Riemann zeta-function
随机矩阵特征多项式和黎曼zeta函数的极值统计
- 批准号:
1792464 - 财政年份:2016
- 资助金额:
$ 24万 - 项目类别:
Studentship
The Many Faces of Random Characteristic Polynomials
随机特征多项式的多个面
- 批准号:
EP/N009436/1 - 财政年份:2016
- 资助金额:
$ 24万 - 项目类别:
Research Grant
Characteristic polynomials in random matrix theory
随机矩阵理论中的特征多项式
- 批准号:
DP110102317 - 财政年份:2011
- 资助金额:
$ 24万 - 项目类别:
Discovery Projects
Non-perturbative effects in complex systems: A study through the theory of random matrices and orthogonal polynomials
复杂系统中的非微扰效应:随机矩阵和正交多项式理论的研究
- 批准号:
EP/F014074/1 - 财政年份:2007
- 资助金额:
$ 24万 - 项目类别:
Research Grant
Non-perturbative effects in complex systems: A study through the theory of random matrices and orthogonal polynomials
复杂系统中的非微扰效应:随机矩阵和正交多项式理论的研究
- 批准号:
EP/F014198/1 - 财政年份:2007
- 资助金额:
$ 24万 - 项目类别:
Research Grant
Chromatic polynomials, random graphs, and error-correcting codes: a unified approach to graph colouring problems
色多项式、随机图和纠错码:解决图着色问题的统一方法
- 批准号:
DP0771300 - 财政年份:2007
- 资助金额:
$ 24万 - 项目类别:
Discovery Projects
Scaling and universality in random matrix models, random polynomials and statistical physics
随机矩阵模型、随机多项式和统计物理中的标度和普适性
- 批准号:
0354962 - 财政年份:2004
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Universality and Scaling in Random Matrix Models, Random Polynomials, and Quantum Mechanics and Statistical Physics
随机矩阵模型、随机多项式、量子力学和统计物理中的普适性和标度
- 批准号:
9970625 - 财政年份:1999
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant