Non-perturbative effects in complex systems: A study through the theory of random matrices and orthogonal polynomials
复杂系统中的非微扰效应:随机矩阵和正交多项式理论的研究
基本信息
- 批准号:EP/F014198/1
- 负责人:
- 金额:$ 5.42万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The paradigm of complex systems is that an extermely simple model (for example, a collection of a large number of identical particles, called Fermions, which only communicate through an extremely simple rule: no two particles are allowed to occupy the same point in space) can exhibit highly organised behaviour as n, the number of constituents, becomes large.A random matrix is an array of numbers arranged in an n columns by n rows grid with the numbers determined from say, the throw of a die, which introducesthe element of unpredictability. It turns out that for a particular, but ubiqiutous familyof random matrices, certain real numbers (eigenvalues) that are fundamental to its description are in one-to-one correspondence with the n Fermions mentioned above.To understand the collective behaviour of this system, we apply a small external probeand observe the response of the system. It turns out that if the probe is asmall and in some sense smooth perturbation, thesystem will tend to remain in the original unperturbed state.However, even a weak but non-smooth external probe can produce responses qualitatively distinct from what can be normally expected. In such situations, the usual approach of expansion in terms of small parameters --- the perturbative treatment --- breaks down completely. New methods to deal with non-perturbative effects will be developed in the proposed research to explain such behaviour.
复杂系统的范例是一个极其简单的模型(例如,大量相同粒子的集合,称为费米子,它们只通过一个极其简单的规则进行通信:不允许两个粒子占据空间中的同一点)可以表现出高度有组织的行为,因为N,组分的数量,随机矩阵是一个排列成n列n行网格的数字数组,其中的数字由骰子的掷数决定,这引入了不可预测性。事实证明,对于一个特殊的,但普遍存在的随机矩阵家族,某些真实的数(本征值)是其描述的基础,是在一对一的对应与上述n费米子。为了理解这个系统的集体行为,我们应用一个小的外部探针,并观察系统的响应。事实证明,如果探针是小的,并且在某种意义上是光滑的扰动,那么微扰将倾向于保持在原始的未扰动状态。然而,即使是一个弱的但非光滑的外部探针也可以产生与通常预期的性质不同的响应。在这种情况下,通常的方法扩展的小参数-微扰处理-完全崩溃。在拟议的研究中,将开发处理非微扰效应的新方法,以解释这种行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Igor Krasovsky其他文献
Igor Krasovsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Igor Krasovsky', 18)}}的其他基金
Asymptotic Analysis of Random Matrices and Exactly Soluble Models
随机矩阵和精确可溶模型的渐近分析
- 批准号:
EP/E022928/1 - 财政年份:2006
- 资助金额:
$ 5.42万 - 项目类别:
Research Grant
相似海外基金
Non-perturbative and BSM effects in particle physics
粒子物理学中的非微扰效应和 BSM 效应
- 批准号:
2713287 - 财政年份:2022
- 资助金额:
$ 5.42万 - 项目类别:
Studentship
Non-perturbative effects of quantum gravity from JT gravity matrix model
JT 引力矩阵模型中量子引力的非微扰效应
- 批准号:
22K03594 - 财政年份:2022
- 资助金额:
$ 5.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topological Solitons and Non-perturbative Effects in Field Theory
场论中的拓扑孤子和非微扰效应
- 批准号:
16F16322 - 财政年份:2016
- 资助金额:
$ 5.42万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Non-perturbative effects in higher-dimensional sumersymmetric theories and string theory
高维超对称理论和弦理论中的非微扰效应
- 批准号:
15K05044 - 财政年份:2015
- 资助金额:
$ 5.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on non-perturbative effects in gauge theory and quantum gravity
规范理论和量子引力中的非微扰效应研究
- 批准号:
15K17643 - 财政年份:2015
- 资助金额:
$ 5.42万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Studies of non-perturbative effects in supersymmetric theories by the localization method
超对称理论非微扰效应的局域化研究
- 批准号:
19740120 - 财政年份:2007
- 资助金额:
$ 5.42万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Perturbative and non-perturbative QCD effects in B-physics
B 物理中的微扰和非微扰 QCD 效应
- 批准号:
228233-2003 - 财政年份:2007
- 资助金额:
$ 5.42万 - 项目类别:
Subatomic Physics Envelope - Individual
Non-perturbative effects in complex systems: A study through the theory of random matrices and orthogonal polynomials
复杂系统中的非微扰效应:随机矩阵和正交多项式理论的研究
- 批准号:
EP/F014074/1 - 财政年份:2007
- 资助金额:
$ 5.42万 - 项目类别:
Research Grant
Study of D-branes (non-perturbative effects in superstring theory) and solitons in field theories
D-膜(超弦理论中的非微扰效应)和场论中的孤子研究
- 批准号:
19740125 - 财政年份:2007
- 资助金额:
$ 5.42万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Perturbative and non-perturbative QCD effects in B-physics
B 物理中的微扰和非微扰 QCD 效应
- 批准号:
228233-2003 - 财政年份:2005
- 资助金额:
$ 5.42万 - 项目类别:
Subatomic Physics Envelope - Individual