Universality and Scaling in Random Matrix Models, Random Polynomials, and Quantum Mechanics and Statistical Physics

随机矩阵模型、随机多项式、量子力学和统计物理中的普适性和标度

基本信息

  • 批准号:
    9970625
  • 负责人:
  • 金额:
    $ 7.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-06-01 至 2002-05-31
  • 项目状态:
    已结题

项目摘要

Proposal:DMS-9970625Principal Investigator: Pavel M. BleherAbstract: Bleher's project focuses on basic problems in the theory of random matrices and random polynomials, and on related problems in the theory of quantum chaos and statistical mechanics. The unifying theme of these problems is a number of different conjectures about universality. The major topics of investigation include: (i) universality of the double scaling limit in random matrix models near critical and multicritical points, its relation to integrable hierarchies and Painleve transcendents, and applications of random matrix models; (ii) universality and scaling for random sections of powers of positive line bundles, especially SU(m+1)-polynomials and universality of eigenstates statistics in the theory of quantum chaos; (iii) almost periodicity of the spectral function for integrable systems in quantum mechanics, trace formulae, and probability distribution of the error function; (iv) the Thouless effect and superpolynomial scaling in classical spin systems with long-range interaction.The concept of scaling and universality is a fundamental principle in different theories of modern mathematics and physics, from probability theory to the physical theory of quantum chaos, and from mathematical analysis to the theory of phase transitions and critical phenomena in statistical physics. In rough terms, the concept of universality states that many mathematical and physical phenomena display remarkable universal features on the scale of very small or very large distances. The major goal of the current project is to consolidate the different concepts of universality that arise in various contexts and, in particular, to investigate scaling and universality in mathematical theories of random matrices and random polynomials with a view toward applications to the theory of quantum chaos and to statistical physics. This award is jointly funded by the Analysis Program in the Division of Mathematical Sciences and the Mathematical Physics Program in the Division of Physics.
提案:DMS-9970625主要研究者:Pavel M. Bleher摘要:Bleher的项目集中在随机矩阵和随机多项式理论的基本问题,以及量子混沌理论和统计力学的相关问题。这些问题的统一主题是关于普遍性的一些不同的见解。主要研究内容包括:(i)随机矩阵模型在临界点和多临界点附近双标度极限的普适性,它与可积族和Painleve超越的关系,以及随机矩阵模型的应用;(ii)正线束幂的随机截面的普适性和标度性,特别是SU(m+1)多项式和量子混沌理论中本征态统计的普适性;(iii)量子力学中可积系统谱函数的概周期性、迹公式和误差函数的概率分布;(iv)具有长程相互作用的经典自旋系统中的无标度效应和超多项式标度标度和普适性的概念是现代数学和物理学的不同理论中的基本原理,从概率论到量子混沌的物理理论,从数学分析到统计物理学中的相变和临界现象理论。概括地说,普适性的概念表明,许多数学和物理现象在非常小或非常大的距离尺度上显示出显着的普遍特征。当前项目的主要目标是巩固在各种背景下出现的不同普适性概念,特别是研究随机矩阵和随机多项式数学理论中的标度和普适性,以期应用于量子混沌理论和统计物理。该奖项由数学科学部的分析计划和物理部的数学物理计划共同资助。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pavel Bleher其他文献

Non-Gaussian energy level statistics for some integrable systems.
一些可积系统的非高斯能级统计。
  • DOI:
  • 发表时间:
    1993
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Pavel Bleher;Pavel Bleher;F. Dyson;F. Dyson;J. Lebowitz;J. Lebowitz
  • 通讯作者:
    J. Lebowitz
Correlations Between Zeros and Supersymmetry
  • DOI:
    10.1007/s002200100512
  • 发表时间:
    2014-01-25
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Pavel Bleher;Bernard Shiffman;Steve Zelditch
  • 通讯作者:
    Steve Zelditch

Pavel Bleher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pavel Bleher', 18)}}的其他基金

Random Matrix Models and Statistical Mechanics
随机矩阵模型和统计力学
  • 批准号:
    1565602
  • 财政年份:
    2016
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Continuing Grant
Simons Center for Geometry and Physics Thematic Program for 2016 "Statistical Mechanics and Combinatorics"
西蒙斯几何与物理中心2016年专题项目“统计力学与组合学”
  • 批准号:
    1603185
  • 财政年份:
    2016
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Standard Grant
Random matrix models and their applications
随机矩阵模型及其应用
  • 批准号:
    1265172
  • 财政年份:
    2013
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Continuing Grant
Random matrix models and their applications to statistical mechanics
随机矩阵模型及其在统计力学中的应用
  • 批准号:
    0969254
  • 财政年份:
    2010
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Continuing Grant
CRM 2008-9 Thematic Program: Probabilistic Methods in Mathematical Physics
CRM 2008-9 专题项目:数学物理中的概率方法
  • 批准号:
    0757926
  • 财政年份:
    2008
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Standard Grant
Scaling and universality in random matrix models and statistical physics
随机矩阵模型和统计物理中的标度和普适性
  • 批准号:
    0652005
  • 财政年份:
    2007
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Continuing Grant
Program in Renormalization and Universality in Mathematics and Mathematical Physics
数学和数学物理重整化和普遍性计划
  • 批准号:
    0514226
  • 财政年份:
    2005
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Standard Grant
Scaling and universality in random matrix models, random polynomials and statistical physics
随机矩阵模型、随机多项式和统计物理中的标度和普适性
  • 批准号:
    0354962
  • 财政年份:
    2004
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Continuing Grant
Distribution of Eigenvalues of the Schrodinger Operator on Compact Manifolds. Matrix Model and Asymptotics of Orthogonal Polynomials
紧流形上薛定谔算子的特征值分布。
  • 批准号:
    9623214
  • 财政年份:
    1996
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Standard Grant

相似海外基金

Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
  • 批准号:
    24K06758
  • 财政年份:
    2024
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Scaling limits of growth in random media
扩大随机介质的增长极限
  • 批准号:
    2246576
  • 财政年份:
    2023
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Continuing Grant
Scaling limits for random processes
随机过程的缩放限制
  • 批准号:
    2597633
  • 财政年份:
    2021
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Studentship
Large symmetrised systems of interacting Brownian bridges and random interlacements and their scaling limits
相互作用的布朗桥和随机交错的大型对称系统及其尺度限制
  • 批准号:
    2813903
  • 财政年份:
    2021
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Studentship
Scaling Limits and Phase Transitions in Spatial Random Processes
空间随机过程中的尺度限制和相变
  • 批准号:
    1954343
  • 财政年份:
    2020
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Standard Grant
Randomness scaling in photonic quantum random number generators (Market Study)
光子量子随机数发生器中的随机性缩放(市场研究)
  • 批准号:
    560511-2021
  • 财政年份:
    2020
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Idea to Innovation
Scaling limits of random particle aggregation models
随机粒子聚集模型的尺度限制
  • 批准号:
    2434393
  • 财政年份:
    2020
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Studentship
Scaling theories of random quantum systems
随机量子系统的标度理论
  • 批准号:
    19H00658
  • 财政年份:
    2019
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Large Scale Asymptotics of Random Spatial Processes: Scaling Exponents, Limit Shapes, and Phase Transitions
随机空间过程的大规模渐近:缩放指数、极限形状和相变
  • 批准号:
    1855688
  • 财政年份:
    2019
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Continuing Grant
Scaling limits of critical directed random graphs
临界有向随机图的缩放限制
  • 批准号:
    2272117
  • 财政年份:
    2019
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了