Computability Theory, Facing Outwards

可计算性理论,面向外

基本信息

  • 批准号:
    1362206
  • 负责人:
  • 金额:
    $ 11.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-15 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

In this project, the PI Russell Miller will continue his work using computability theory to analyze the difficulty of problems in other areas of mathematics. These areas include field theory, commutative and differential algebra, model theory, and number theory, as well as the possibility of describing uncountable structures and studying them effectively. Traditional computability theory examines the capabilities of digital computers and the limits on the problems which can be solved using such computers. Since the pioneering work of Alan Turing, it has been known that many problems cannot be solved by any digital computer running any program whatsoever. Even these "noncomputable" problems can be ranked by difficulty, however: problem A is easier (or at least, no more difficult) than problem B if we can show how a hypothetical program solving B would allow us to solve A as well. Indeed, in certain cases we can learn whether a particular problem is computable or not by determining where related noncomputable problems sit in this hierarchy. Recently, the PI has made contributions ranging from solutions to concrete problems about deciding whether certain polynomial equations can be satisfied using rational numbers, to more abstract questions about the difficulty of solving algebraic differential equations and the relative difficulty of considering structures from different areas of mathematics.The PI recently collaborated with several number theorists to produce new evidence for the undecidability of Hilbert's Tenth Problem for the rational numbers, the problem which asks for an algorithm to decide which Diophantine equations have rational solutions. He plans to continue this work, considering the specific question of subrings of the rationals of density 0 (i.e., "very close" to the integers). In field theory, he has made substantial progress, both by asking and answering natural computable-model-theoretic questions about the difficulty of computing isomorphisms between fields, and also by using computability theory to answer general questions about the complexity of fields in relation to the complexity of other mathematical structures. He hopes to address a key question in differential algebra, whose solution would help mathematicians better understand differentially closed fields and solutions to differential equations. (These are analogous to algebraically closed fields, but are much less well understood at present.) For some years now he has taken the lead in introducing computability techniques to researchers throughout mathematics, and has often been able to interest such people in his questions and his methods. With this grant, those efforts will most certainly continue.
在这个项目中,PI罗素米勒将继续他的工作,使用可计算性理论来分析数学的其他领域的问题的难度。 这些领域包括场论,交换和微分代数,模型论和数论,以及描述不可数结构和有效研究它们的可能性。 传统的可计算性理论研究的是数字计算机的能力以及使用这种计算机可以解决的问题的局限性。 自从艾伦·图灵的开创性工作以来,人们已经知道,许多问题无法通过任何运行任何程序的数字计算机来解决。 然而,即使是这些“不可计算”的问题也可以按难度来排序:如果我们能证明一个假设的程序解决了B,我们也能解决问题A,那么问题A就比问题B容易(或者至少不会更难)。 事实上,在某些情况下,我们可以通过确定相关的不可计算问题在这个层次中的位置来了解特定问题是否可计算。 最近,PI的贡献范围从解决方案到具体问题,即决定是否可以使用有理数满足某些多项式方程,关于解决代数微分方程的困难和考虑来自不同数学领域的结构的相对困难的更抽象的问题。PI最近与几位数论家合作,为希尔伯特的不可判定性提供了新的证据。第十个有理数问题,这个问题要求一个算法来决定哪些丢番图方程有合理的解决方案。 他计划继续这项工作,考虑密度为0的有理数的子环的具体问题(即,“非常接近”整数)。 在场论方面,他取得了实质性的进展,既通过询问和回答关于计算域之间同构的困难的自然可计算模型理论问题,也通过使用可计算性理论回答关于域的复杂性与其他数学结构的复杂性的一般问题。他希望解决微分代数中的一个关键问题,其解决方案将有助于数学家更好地理解微分闭域和微分方程的解。(它们类似于代数闭域,但目前还不太清楚。) 几年来,他已经率先介绍可计算性技术的研究人员在整个数学,并经常能够感兴趣的人在他的问题和他的方法。 有了这笔赠款,这些努力肯定会继续下去。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Russell Miller其他文献

Mutual aid as a bridge: a rapid realist review of migrant inclusion in the Japanese response to the COVID-19 pandemic
互助作为桥梁:对日本应对 COVID-19 大流行的移民包容性进行快速现实主义审查
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Miller Russell;Arita Kuniko;Igarashi Niaya Harper;Fujii Daiki;Yumino Aya;Jimba Masamine;Russell Miller
  • 通讯作者:
    Russell Miller
BIG DATA ON THE HEALTH AND WELFARE OF INTERNATIONAL MIGRANTS: THE NEXT STEP IN UNDERSTANDING THE MIGRANT EXPERIENCE IN JAPAN?
关于国际移民健康和福利的大数据:了解日本移民经历的下一步?
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Miller Russell;Arita Kuniko;Igarashi Niaya Harper;Fujii Daiki;Yumino Aya;Jimba Masamine;Russell Miller;Russell Miller
  • 通讯作者:
    Russell Miller
Heuristics-enhanced dead-reckoning (HEDR) for accurate position tracking of tele-operated UGVs
启发式增强航位推算 (HEDR),用于遥控 UGV 的精确位置跟踪
  • DOI:
    10.1117/12.850301
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Borenstein;A. Borrell;Russell Miller;David W. Thomas
  • 通讯作者:
    David W. Thomas
Two-hit mouse model of heart failure with preserved ejection fraction combining diet-induced obesity and renin-mediated hypertension
  • DOI:
    10.1038/s41598-024-84515-9
  • 发表时间:
    2025-01-02
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Justin H. Berger;Yuji Shi;Timothy R. Matsuura;Kirill Batmanov;Xian Chen;Kelly Tam;Mackenzie Marshall;Richard Kue;Jiten Patel;Renee Taing;Russell Callaway;Joanna Griffin;Attila Kovacs;Dinesh Hirenallur-Shanthappa;Russell Miller;Bei B. Zhang;Rachel J. Roth Flach;Daniel P. Kelly
  • 通讯作者:
    Daniel P. Kelly
Monitoring health equity for foreign nationals in Japan: where is the big data?
监测在日外国人的健康公平性:大数据在哪里?
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Miller Russell;Arita Kuniko;Igarashi Niaya Harper;Fujii Daiki;Yumino Aya;Jimba Masamine;Russell Miller;Russell Miller;神馬征峰;Russell Miller;Russell Miller
  • 通讯作者:
    Russell Miller

Russell Miller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Russell Miller', 18)}}的其他基金

Computability and the absolute Galois group of the rational numbers
可计算性和有理数的绝对伽罗瓦群
  • 批准号:
    2348891
  • 财政年份:
    2024
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Continuing Grant
Conference: Travel Awards to Attend the Twentieth Latin American Symposium on Mathematical Logic
会议:参加第二十届拉丁美洲数理逻辑研讨会的旅行奖
  • 批准号:
    2414907
  • 财政年份:
    2024
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Standard Grant
Nineteenth Latin American Symposium on Mathematical Logic
第十九届拉丁美洲数理逻辑研讨会
  • 批准号:
    2212620
  • 财政年份:
    2022
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Standard Grant
Student Travel Support to Attend the North American Annual and European Summer Meetings of the Association For Symbolic Logic
学生参加符号逻辑协会北美年会和欧洲夏季会议的旅行支持
  • 批准号:
    1935558
  • 财政年份:
    2020
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Continuing Grant
The Eighteenth Latin American Symposium on Mathematical Logic
第十八届拉丁美洲数理逻辑研讨会
  • 批准号:
    1947015
  • 财政年份:
    2019
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Standard Grant
Mid-Atlantic Mathematical Logic Seminar
大西洋中部数理逻辑研讨会
  • 批准号:
    1834219
  • 财政年份:
    2018
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Continuing Grant
Student Travel Awards to Attend the North American Annual and European Summer Meetings of the ASL
参加 ASL 北美年会和欧洲夏季会议的学生旅行奖
  • 批准号:
    1317262
  • 财政年份:
    2013
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Continuing Grant
Computability Theory, Facing Outwards
可计算性理论,面向外
  • 批准号:
    1001306
  • 财政年份:
    2010
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Standard Grant
Instructional Scientific Equipment Program
教学科学设备计划
  • 批准号:
    7511376
  • 财政年份:
    1975
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Problems in Ramsey theory
拉姆齐理论中的问题
  • 批准号:
    2582036
  • 财政年份:
    2025
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Studentship
A statistical decision theory of cognitive capacity
认知能力的统计决策理论
  • 批准号:
    DP240101511
  • 财政年份:
    2024
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Discovery Projects
Numerical simulations of lattice field theory
晶格场论的数值模拟
  • 批准号:
    2902259
  • 财政年份:
    2024
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Studentship
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
  • 批准号:
    EP/Y014030/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Research Grant
Billiard Field Theory
台球场论
  • 批准号:
    EP/Y023005/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Research Grant
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
  • 批准号:
    EP/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Research Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Continuing Grant
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
  • 批准号:
    2332922
  • 财政年份:
    2024
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Standard Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
  • 批准号:
    2334874
  • 财政年份:
    2024
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Standard Grant
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
  • 批准号:
    2349004
  • 财政年份:
    2024
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了