Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage

合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计

基本信息

  • 批准号:
    2341994
  • 负责人:
  • 金额:
    $ 38.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-02-01 至 2027-01-31
  • 项目状态:
    未结题

项目摘要

Long-duration energy storage technology (10 hours, LDES) is critical to the expansion of intermittent renewable energy (e.g., solar/wind). Conventional Na-S and K-S batteries are attractive for LDES due to their low cost and the use of earth-abundant elements. However, their deployment is severely hindered by their high operational temperature of 300-350oC and associated degradation and safety issues. This project will use materials design and simulation-driven approaches to develop innovative electrolytes to dissolve insoluble reaction products in Na-S and K-S batteries and advance knowledge on underlying dissolution mechanisms. Such novel electrolytes will enhance reaction kinetics so the operation temperature can be reduced to 60-120oC, which not only enhances thermal stability but also decreases operational costs. The new material systems from this project have the potential to be deployed for LDES, which enhances the economic competitiveness and sustainability of U.S. The project activities will integrate research and education, targeting students from K-12 to graduate school and promoting underrepresented communities' education through hands-on experiences, advising, and research integration across all levels. The primary challenge in traditional alkaline metal sulfur (AMS) batteries arises from the formation of solid M2S2 and M2S compounds during discharge (M = Na, K), which exhibit poor electrochemical kinetics. This limits the reversible redox range mainly to S/M2S3 reactions, reducing specific capacity and energy density. The goal of this project is to identify and develop new solvents that can dissolve M2S2/M2S readily to replace conventional ether electrolytes, which will in turn make M2S2/M2S electrochemically active. This will double the specific capacity of sulfur from 500 mAh/g in ether electrolytes to 1000-1500 mAh/g, along with a long cycle life. The project will utilize a simulation-driven approach to design electrolytes, such as combining molecular dynamics (MD) simulations and machine learning (ML). MD simulations calculate solvation free energy, and ML enables high-throughput screening for solvents with superior M2S2 and M2S solubilities. Promising candidates will be experimentally validated. After experimentally confirming the high-performance solvents, multi-scale/multi-modal characterizations will be used to understand the fundamental dissolution mechanisms, electrochemistry and transport in the proposed system comprehensively. An Ah-level prototype will be constructed and tested, and the cost of developed materials and devices will be analyzed for large-scale deployment. The advances in knowledge and research tools together will help develop next-generation batteries for long-duration energy storage.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
长时间储能技术(10小时,LDES)对于间歇性可再生能源的扩展至关重要(例如,太阳能/风能)。传统的Na-S和K-S电池由于其低成本和使用地球上丰富的元素而对LDES有吸引力。然而,它们的部署受到300- 350 ℃的高工作温度以及相关的降解和安全问题的严重阻碍。该项目将使用材料设计和模拟驱动的方法来开发创新的电解质,以溶解Na-S和K-S电池中的不溶性反应产物,并推进对潜在溶解机制的了解。这种新型电解质将增强反应动力学,因此操作温度可以降低到60- 120 ℃,这不仅提高了热稳定性,而且降低了操作成本。该项目的新材料系统有可能被部署用于LDES,从而提高美国的经济竞争力和可持续性。该项目活动将整合研究和教育,针对从K-12到研究生院的学生,并通过实践经验,建议和各级研究整合来促进代表性不足的社区的教育。传统碱金属硫(AMS)电池的主要挑战来自于在放电期间形成固体M2 S2和M2 S化合物(M = Na,K),其表现出差的电化学动力学。这将可逆氧化还原范围主要限制为S/M2 S3反应,降低了比容量和能量密度。该项目的目标是识别和开发能够容易地溶解M2 S2/M2 S的新溶剂,以取代传统的醚电解质,这反过来又使M2 S2/M2 S具有电化学活性。这将使硫的比容量加倍,从醚电解质中的500 mAh/g增加到1000-1500 mAh/g,沿着具有长循环寿命。该项目将利用模拟驱动的方法来设计电解质,例如结合分子动力学(MD)模拟和机器学习(ML)。MD模拟计算溶剂化自由能,ML能够高通量筛选具有上级M2 S2和M2 S溶解度的溶剂。有希望的候选人将进行实验验证。在实验确认高性能溶剂后,将使用多尺度/多模态表征来全面了解所提出的系统中的基本溶解机制、电化学和传输。将建造和测试一个AH级原型,并将分析开发材料和设备的成本,以进行大规模部署。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuan Yang其他文献

Asymmetrical temperature control of a BTX dividing-wall distillation column
BTX 间壁蒸馏塔的不对称温度控制
  • DOI:
    10.1016/j.cherd.2017.04.023
  • 发表时间:
    2017-07
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Yuan Yang;Huang Kejin;Chen Haisheng;Zhang Liang;Wang Shaofeng
  • 通讯作者:
    Wang Shaofeng
Highly efficient desymmetrization of cyclopropenes to azabicyclo[3.1.0]hexanes with five continuous stereogenic centers by copper-catalyzed [3+2] cycloadditions
通过铜催化的[3 2]环加成将环丙烯高效去对称化为具有五个连续立体中心的氮杂双环[3.1.0]己烷
  • DOI:
    10.1039/c8qo00761f
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Yuan Yang;Zheng Zhan-Jiang;Ye Fei;Ma Jun-Han;Xu Zheng;Bai Xing-Feng;Li Li;Xu Li-Wen
  • 通讯作者:
    Xu Li-Wen
PPARgamma-mediated advanced glycation end products regulation of neural stem cells.
PPARgamma 介导的晚期糖基化终末产物对神经干细胞的调节。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sun Zi-lin;Li ling;Wang Shao-hua;Yuan Yang;Guo Yi-jing
  • 通讯作者:
    Guo Yi-jing
Structural Design, Simulation and Experiment of Quadruped Robot
四足机器人结构设计、仿真与实验
  • DOI:
    10.3390/app112210705
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yunde Shi;Shilin Li;Mingqiu Guo;Yuan Yang;Dan Xia;Xiang Luo
  • 通讯作者:
    Xiang Luo
Characterizing basin-scale precipitation gradients in the Third Pole region using a high-resolution atmospheric simulation-based dataset
使用基于高分辨率大气模拟的数据集表征第三极地区的盆地规模降水梯度
  • DOI:
    10.5194/hess-26-4587-2022
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Yaozhi Jiang;Kun Yang;Hua Yang;Yingying Chen;Xu Zhou;Jing Sun;Yuan Yang;Yan Wang
  • 通讯作者:
    Yan Wang

Yuan Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuan Yang', 18)}}的其他基金

CAREER: Neuro-navigation guided non-invasive brain stimulation for individualized precision rehabilitation in stroke
职业:神经导航引导的非侵入性脑刺激用于中风的个体化精准康复
  • 批准号:
    2236459
  • 财政年份:
    2023
  • 资助金额:
    $ 38.63万
  • 项目类别:
    Continuing Grant
CAREER: Neuro-navigation guided non-invasive brain stimulation for individualized precision rehabilitation in stroke
职业:神经导航引导的非侵入性脑刺激用于中风的个体化精准康复
  • 批准号:
    2401215
  • 财政年份:
    2023
  • 资助金额:
    $ 38.63万
  • 项目类别:
    Continuing Grant
Scalable Production of Radiative Cooling Paint for Thermal Management
用于热管理的辐射冷却涂料的规模化生产
  • 批准号:
    2005747
  • 财政年份:
    2020
  • 资助金额:
    $ 38.63万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Embedding Material-Informed History through Fractional Calculus State Variable Formulation
合作研究:通过分数阶微积分状态变量公式嵌入材料丰富的历史
  • 批准号:
    2345437
  • 财政年份:
    2024
  • 资助金额:
    $ 38.63万
  • 项目类别:
    Standard Grant
Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
  • 批准号:
    2341995
  • 财政年份:
    2024
  • 资助金额:
    $ 38.63万
  • 项目类别:
    Standard Grant
Collaborative Research: Embedding Material-Informed History through Fractional Calculus State Variable Formulation
合作研究:通过分数阶微积分状态变量公式嵌入材料丰富的历史
  • 批准号:
    2345438
  • 财政年份:
    2024
  • 资助金额:
    $ 38.63万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323715
  • 财政年份:
    2023
  • 资助金额:
    $ 38.63万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Active Learning-Based Material Discovery for 3D Printed Solids with Locally-Tunable Electrical and Mechanical Properties
DMREF/协作研究:基于主动学习的材料发现,用于具有局部可调电气和机械性能的 3D 打印固体
  • 批准号:
    2323696
  • 财政年份:
    2023
  • 资助金额:
    $ 38.63万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe:Substrate-inverted Multi-Material Integration Technology
合作研究:FuSe:衬底倒置多材料集成技术
  • 批准号:
    2328840
  • 财政年份:
    2023
  • 资助金额:
    $ 38.63万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323716
  • 财政年份:
    2023
  • 资助金额:
    $ 38.63万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Active Learning-Based Material Discovery for 3D Printed Solids with Locally-Tunable Electrical and Mechanical Properties
DMREF/协作研究:基于主动学习的材料发现,用于具有局部可调电气和机械性能的 3D 打印固体
  • 批准号:
    2323695
  • 财政年份:
    2023
  • 资助金额:
    $ 38.63万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe:Substrate-inverted Multi-Material Integration Technology
合作研究:FuSe:衬底倒置多材料集成技术
  • 批准号:
    2328839
  • 财政年份:
    2023
  • 资助金额:
    $ 38.63万
  • 项目类别:
    Continuing Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
  • 批准号:
    2404816
  • 财政年份:
    2023
  • 资助金额:
    $ 38.63万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了