Motion Guidance for Ocean Sampling by Underwater Vehicles using Autonomous Control and Oceanographic Models with Forecast Uncertainty
使用具有预测不确定性的自主控制和海洋模型的水下航行器海洋采样运动指导
基本信息
- 批准号:1362837
- 负责人:
- 金额:$ 50.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project addresses fundamental questions on how to select the optimal locations to collect observations and how to ensure that the sensor platforms travel to these locations along informative paths in an expansive, dynamic process such as the ocean. The significance of the proposed research lies in the observation that climate processes occur on long time scales. Understanding these processes requires a combination of ocean models and observations, which can be collected over large space-time volumes by fleets of high-endurance autonomous submarines that steer intelligently to maximize the utility of their measurements. Underwater vehicles that sample the ocean interior are important for understanding ocean processes in general, because -- unlike weather prediction in the atmosphere -- the subsurface ocean environment is difficult to sample remotely. Thus, the long-term goal of this project is create new path-planning strategies for unmanned, mobile sensor platforms to measure information-rich but undersampled dynamic processes in the ocean. Indeed the methods developed in this project will be readily transferrable to operational data assimilation systems.The specific objective of the research is to apply tools from data assimilation, nonlinear control, and dynamical systems theory to design sampling trajectories for accurate estimation and prediction of circulating ocean currents represented by a system of vortices. The technical approach is to (1) synthesize Lagrangian analysis based on deterministic, dynamical systems theory with data assimilation techniques that properly account for uncertainty via a Monte Carlo approach; (2) construct a theoretically justified framework for multi-vehicle control using a fluids-inspired strategy based on the nonlinear feedback control of active singularities; and (3) formulate an optimal sampling framework to generate long-endurance vehicle trajectories using Lagrangian descriptors of the flow geometry while maximizing flowfield observability. The intellectual significance lies in the anticipated contributions to the practice of Lagrangian data assimilation and nonlinear feedback control for the guidance of autonomous sampling platforms by incorporating uncertainty. Lagrangian analysis methods are well suited for sampling deterministic dynamical systems with autonomous sensor platforms because they use platform motion as a sensor measurement and do not require onboard flow sensors. By relaxing the deterministic assumptions of the observing system, an ensemble-based, probabilistic approach to planning with Lagrangian analysis promises to improve the accuracy of the forecast of the estimated processes. A principled design of path-planning algorithms based on artificial flow potentials will allow sampling platforms to exploit whenever possible the underlying motion of ocean currents to maximize endurance.
该项目涉及以下基本问题:如何选择最佳位置来收集观测数据,以及如何确保传感器平台在海洋等广阔、动态的过程中沿着信息丰富的路径到达这些位置。拟议研究的意义在于观察到气候过程发生在长时间尺度上。理解这些过程需要海洋模型和观测的结合,这些数据可以由高耐力自主潜艇舰队在大的时空体积上收集,这些潜艇智能地驾驶,以最大限度地发挥其测量的效用。对海洋内部进行采样的水下航行器对了解总体上的海洋过程很重要,因为--与大气中的天气预报不同--水下海洋环境很难远程采样。因此,该项目的长期目标是为无人移动传感器平台创建新的路径规划战略,以测量海洋中信息丰富但采样不足的动态过程。这项研究的具体目标是应用数据同化、非线性控制和动力系统理论的工具来设计采样轨迹,以准确地估计和预报以涡系表示的循环洋流。技术方法是:(1)将基于确定性动力系统理论的拉格朗日分析与数据同化技术相结合,通过蒙特卡罗方法适当地解释不确定性;(2)使用基于有源奇点的非线性反馈控制的流体启发策略,构建理论上合理的多车辆控制框架;以及(3)利用流动几何的拉格朗日描述符,在最大化流场可观测性的同时,制定最优采样框架,以生成长期持续的车辆轨迹。其理论意义在于,通过引入不确定性,期望对拉格朗日数据同化和非线性反馈控制的实践做出贡献,以指导自主采样平台的工作。拉格朗日分析方法适用于具有自主传感器平台的确定性动态系统的采样,因为它们使用平台运动作为传感器测量,并且不需要机载流量传感器。通过放松观测系统的确定性假设,基于系综的概率规划方法和拉格朗日分析有望提高对估计过程的预测精度。基于人工流势的路径规划算法的原则性设计将允许采样平台尽可能地利用洋流的潜在运动,以最大限度地提高耐力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Derek Paley其他文献
Motion Coordination of Multiple Autonomous Vehicles in a Spatiotemporal Flowfield
时空流场中多自主车辆的运动协调
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Cameron K. Peterson;Derek Paley - 通讯作者:
Derek Paley
Derek Paley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Derek Paley', 18)}}的其他基金
I-Corps: A Self-driving Autonomous Electric Scooter
I-Corps:自动驾驶电动滑板车
- 批准号:
2031566 - 财政年份:2020
- 资助金额:
$ 50.46万 - 项目类别:
Standard Grant
CAREER: Dynamics and Control of Motion Coordination for Information Transmission in Groups
职业:群体信息传输运动协调的动力学和控制
- 批准号:
0954361 - 财政年份:2010
- 资助金额:
$ 50.46万 - 项目类别:
Standard Grant
Collaborative Research: Targeting Observations of Tropical Cyclones using Cooperative Control of Unmanned Aircraft
合作研究:利用无人机协同控制进行热带气旋观测
- 批准号:
0928416 - 财政年份:2009
- 资助金额:
$ 50.46万 - 项目类别:
Standard Grant
相似海外基金
HoloSurge: Multimodal 3D Holographic tool and real-time Guidance System with point-of-care diagnostics for surgical planning and interventions on liver and pancreatic cancers
HoloSurge:多模态 3D 全息工具和实时指导系统,具有护理点诊断功能,可用于肝癌和胰腺癌的手术规划和干预
- 批准号:
10103131 - 财政年份:2024
- 资助金额:
$ 50.46万 - 项目类别:
EU-Funded
Practical guidance on accessible statistical methods for different estimands in randomised trials
随机试验中不同估计值的可用统计方法的实用指南
- 批准号:
MR/Z503770/1 - 财政年份:2024
- 资助金额:
$ 50.46万 - 项目类别:
Research Grant
Stratification, Management, and Guidance of Hypertrophic Cardiomyopathy Patients using Hybrid Digital Twin Solutions
使用混合数字孪生解决方案对肥厚型心肌病患者进行分层、管理和指导
- 批准号:
10109598 - 财政年份:2024
- 资助金额:
$ 50.46万 - 项目类别:
EU-Funded
SBIR Phase I: Intelligent Interactive Guidance System for Litigated Insurance Claims
SBIR第一期:保险理赔智能互动引导系统
- 批准号:
2329603 - 财政年份:2024
- 资助金额:
$ 50.46万 - 项目类别:
Standard Grant
RII Track-4:@NSF: Surrogate-based Optimal Atmospheric Entry Guidance using High-fidelity Simulation Data
RII Track-4:@NSF:使用高保真模拟数据的基于替代的最佳大气进入指导
- 批准号:
2327379 - 财政年份:2024
- 资助金额:
$ 50.46万 - 项目类别:
Standard Grant
HoloSurge:Multimodal 3D Holographic tool and real-time Guidance System with point-of-care diagnostics for surgical planning and interventions on liver and pancreatic cancers
HoloSurge:多模态 3D 全息工具和实时引导系统,具有护理点诊断功能,可用于肝癌和胰腺癌的手术规划和干预
- 批准号:
10109943 - 财政年份:2024
- 资助金额:
$ 50.46万 - 项目类别:
EU-Funded
The Lowdown - An AI-based medical device that uniquely combines clinical guidance with real user experience to support improved contraceptive understanding and use.
The Lowdown - 一种基于人工智能的医疗设备,将临床指导与真实用户体验独特地结合起来,以支持提高避孕药具的理解和使用。
- 批准号:
10103064 - 财政年份:2024
- 资助金额:
$ 50.46万 - 项目类别:
Collaborative R&D
ERI: Advancing Spontaneous Volunteer Coordination and Guidance for Effective Disaster Response
ERI:推进自发志愿者协调和指导,以实现有效的灾难应对
- 批准号:
2346936 - 财政年份:2024
- 资助金额:
$ 50.46万 - 项目类别:
Standard Grant
Implementing and Iterating WeWALK’s Agent-Based Guidance System (WeASSIST) in Rail Transport to Improve Visually Impaired Customer Experience
在铁路运输中实施和迭代 WeWALK 基于代理的引导系统 (WeASSIST),以改善视障客户体验
- 批准号:
10098144 - 财政年份:2024
- 资助金额:
$ 50.46万 - 项目类别:
Collaborative R&D
Real-time Assurance of Financial Guidance AI using Explicit Guardrails
使用显式护栏实时保证财务指导人工智能
- 批准号:
10072685 - 财政年份:2023
- 资助金额:
$ 50.46万 - 项目类别:
Grant for R&D