Function Theory on Polydiscs

多圆盘函数论

基本信息

  • 批准号:
    1362798
  • 负责人:
  • 金额:
    $ 9.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-06-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

This project concerns the study of complex functions of two or more variables with sufficiently nice structure. Such functions can be used to encode information about simple physical systems that accept input data and release output data, such as signal processors. They are also closely related to problems in robust control theory; here, the driving question is how to design systems that perform desired tasks while maintaining internal stability. The project's motivation is this: classic results by mathematicians such as Beurling and Herglotz show that nice functions of one variable can be represented using different and enlightening formulas. Different formulas are useful in different situations, and the collection serves as a robust toolbox for studying properties of complex functions and related objects. Recent results show that several essential one-variable formulas have two-variable analogues. The goals of this project include extending these known results, developing new formulas for functions of several variables, and investigating applications. While pursing this research, the principal investigator will continue to mentor students interested in science and mathematics through her teaching and outreach activities.The specific focus of this project is the study of holomorphic functions on the polydisc and multivariate analogues of classic representation formulas for such functions. The formulas of interest include transfer function realizations for Schur-Agler functions and weak factorizations of Hardy spaces. Specific topics of interest include canonical constructions, generalizations to other function spaces and domains, and applications. The study of transfer function realizations is closely related to both reproducing kernel Hilbert spaces and the "state space" methods of systems engineering. The proposed generalizations and refinements will use properties of related Hilbert spaces of functions and techniques that arise in the context of multidimensional input/state/output systems and scattering systems. The construction and study of weak Hardy space factorizations will require tools from multiparameter harmonic analysis, including atomic decompositions of product Hardy spaces and technical geometric results. Many properties of reproducing kernel Hilbert spaces can also be described with functions called generalized Bergman metrics. Within this context, the principal investigator plans a further study of functions on polydiscs, with an emphasis on boundary behavior. Such questions have applications to Cowen-Douglas operators, and the techniques suggest a method of generalizing results on polydiscs to classes of reproducing kernel Hilbert spaces.
This project concerns the study of complex functions of two or more variables with sufficiently nice structure. Such functions can be used to encode information about simple physical systems that accept input data and release output data, such as signal processors. They are also closely related to problems in robust control theory; here, the driving question is how to design systems that perform desired tasks while maintaining internal stability. The project's motivation is this: classic results by mathematicians such as Beurling and Herglotz show that nice functions of one variable can be represented using different and enlightening formulas. Different formulas are useful in different situations, and the collection serves as a robust toolbox for studying properties of complex functions and related objects. Recent results show that several essential one-variable formulas have two-variable analogues. The goals of this project include extending these known results, developing new formulas for functions of several variables, and investigating applications. While pursing this research, the principal investigator will continue to mentor students interested in science and mathematics through her teaching and outreach activities.The specific focus of this project is the study of holomorphic functions on the polydisc and multivariate analogues of classic representation formulas for such functions. The formulas of interest include transfer function realizations for Schur-Agler functions and weak factorizations of Hardy spaces. Specific topics of interest include canonical constructions, generalizations to other function spaces and domains, and applications. The study of transfer function realizations is closely related to both reproducing kernel Hilbert spaces and the "state space" methods of systems engineering. The proposed generalizations and refinements will use properties of related Hilbert spaces of functions and techniques that arise in the context of multidimensional input/state/output systems and scattering systems. The construction and study of weak Hardy space factorizations will require tools from multiparameter harmonic analysis, including atomic decompositions of product Hardy spaces and technical geometric results. Many properties of reproducing kernel Hilbert spaces can also be described with functions called generalized Bergman metrics. Within this context, the principal investigator plans a further study of functions on polydiscs, with an emphasis on boundary behavior. Such questions have applications to Cowen-Douglas operators, and the techniques suggest a method of generalizing results on polydiscs to classes of reproducing kernel Hilbert spaces.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kelly Bickel其他文献

Crouzeix's conjecture, compressions of shifts, and classes of nilpotent matrices
克鲁泽克斯猜想、移位压缩和幂零矩阵类
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kelly Bickel;Georgia Corbett;Annie Glenning;Changkun Guan;Martin Vollmayr
  • 通讯作者:
    Martin Vollmayr

Kelly Bickel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kelly Bickel', 18)}}的其他基金

RUI: Rational Schur Functions and their Applications
RUI:Rational Schur 函数及其应用
  • 批准号:
    2000088
  • 财政年份:
    2020
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
Function Theory on Polydiscs
多圆盘函数论
  • 批准号:
    1448846
  • 财政年份:
    2014
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Problems in Ramsey theory
拉姆齐理论中的问题
  • 批准号:
    2582036
  • 财政年份:
    2025
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Studentship
A statistical decision theory of cognitive capacity
认知能力的统计决策理论
  • 批准号:
    DP240101511
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Discovery Projects
Numerical simulations of lattice field theory
晶格场论的数值模拟
  • 批准号:
    2902259
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Studentship
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
  • 批准号:
    EP/Y014030/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Research Grant
Billiard Field Theory
台球场论
  • 批准号:
    EP/Y023005/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Research Grant
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
  • 批准号:
    EP/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Research Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Continuing Grant
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
  • 批准号:
    2332922
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
  • 批准号:
    2334874
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
  • 批准号:
    2349004
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了