RUI: Rational Schur Functions and their Applications
RUI:Rational Schur 函数及其应用
基本信息
- 批准号:2000088
- 负责人:
- 金额:$ 11.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project lies at the intersection of operator theory and complex analysis, two areas of pure mathematics. Operator theory began with the study of matrices (arrays of numbers), and by the early twentieth century, had given much of the mathematical foundation for quantum mechanics. Since then, operator-theoretic techniques have had several applications, especially in constructing and studying a variety of useful functions, i.e., rules that encode specific types of information. For example, in control engineering, setups such as autopilot systems that accept inputs, receive feedback, and release outputs can be modeled with general matrices (or operators), while a system’s key information is often encoded in its transfer function. Recently, operator theory techniques have also been used to decompose signals into simple pieces, via something called a wavelet construction. In this project, the principal investigator will use operators to study problems related to a specific class of functions, called rational functions, which appear in such applications. Many of these problems have parts that are amenable to undergraduate research, and much of the research in this project will be explored alongside diverse groups of undergraduate researchers.More precisely, this project concerns rational functions in one and more variables that are bounded on certain domains. Such rational functions include finite Blaschke products (FBPs), which have played significant roles in factorization, interpolation, and approximation problems in complex analysis. Recently, FBPs have arisen in the context of a famous open problem in operator theory called Crouzeix’s conjecture, which basically says that the numerical range of a bounded operator on a Hilbert space is a 2-spectral set for that operator. The first goals of this project are to use FBPs to investigate and solve various cases of Crouzeix’s conjecture, use Crouzeix’s conjecture to ask and answer new questions about FBPs, and to explore related questions about spectral sets, compressed shifts, and truncated Toeplitz operators. The second topic of this project concerns multivariate (rational and non-rational) functions on the bidisk and polydisk. Specifically, the second main goal is to use model/realization theory to systematically characterize the structure and fine boundary regularity of bounded analytic functions on the bidisk and polydisk. This goal is motivated by recent work on both the structure of rational inner functions near boundary singularities and new canonical realization formulas for general bounded analytic functions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目位于算符理论和复分析的交叉点上,这是纯数学的两个领域。算符理论始于对矩阵(数组)的研究,到二十世纪初,已经为量子力学提供了大量的数学基础。从那时起,算符理论技术有了几个应用,特别是在构造和研究各种有用的函数方面,即编码特定类型信息的规则。例如,在控制工程中,接受输入、接收反馈和释放输出的自动驾驶系统等设置可以用通用矩阵(或算子)建模,而系统的关键信息通常编码在其传递函数中。最近,算符理论技术也被用来将信号分解成简单的片段,通过一种称为小波构造的东西。在这个项目中,主要研究人员将使用运算符来研究与出现在此类应用程序中的一类特定函数(称为有理函数)相关的问题。这些问题中的许多都有适合本科生研究的部分,这个项目中的许多研究将与不同的本科生研究人员一起探索。更准确地说,这个项目涉及一个和多个变量中的有理函数,这些变量有界于某些领域。这些有理函数包括有限Blaschke积(FBP),它们在复分析中的因式分解、内插和逼近问题中发挥了重要作用。最近,在算子理论中一个著名的公开问题Crouzeix猜想的背景下出现了FBPs,该猜想基本上是说Hilbert空间上的有界算子的数值值域是该算子的2-谱集。这个项目的第一个目标是利用FBP来研究和解决Crouzeix猜想的各种情况,使用Crouzeix猜想来提出和回答关于FBP的新问题,并探索与谱集、压缩移位和截断Toeplitz算子相关的问题。这个项目的第二个主题涉及双圆盘和多圆盘上的多元(有理和非有理)函数。具体地说,第二个主要目标是利用模型/实现理论系统地刻画双圆盘和多圆盘上有界解析函数的结构和精细边界正则性。这一目标是由最近关于边界奇点附近的有理内部函数的结构和一般有界解析函数的新的规范实现公式的工作所推动的。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Crouzeix’s Conjecture and Related Problems
- DOI:10.1007/s40315-020-00350-9
- 发表时间:2020-06
- 期刊:
- 影响因子:2.1
- 作者:K. Bickel;P. Gorkin;A. Greenbaum;T. Ransford;Felix L. Schwenninger;E. Wegert
- 通讯作者:K. Bickel;P. Gorkin;A. Greenbaum;T. Ransford;Felix L. Schwenninger;E. Wegert
Analytic Continuation of Concrete Realizations and the McCarthy Champagne Conjecture
具体实现的解析延拓和麦卡锡香槟猜想
- DOI:10.1093/imrn/rnac050
- 发表时间:2022
- 期刊:
- 影响因子:1
- 作者:Bickel, Kelly;Pascoe, J E;Tully-Doyle, Ryan
- 通讯作者:Tully-Doyle, Ryan
Clark Measures for Rational Inner Functions
有理内函数的克拉克测度
- DOI:10.1307/mmj/20216046
- 发表时间:2022
- 期刊:
- 影响因子:0.9
- 作者:Bickel, Kelly;Cima, Joseph A.;Sola, Alan A.
- 通讯作者:Sola, Alan A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kelly Bickel其他文献
Crouzeix's conjecture, compressions of shifts, and classes of nilpotent matrices
克鲁泽克斯猜想、移位压缩和幂零矩阵类
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Kelly Bickel;Georgia Corbett;Annie Glenning;Changkun Guan;Martin Vollmayr - 通讯作者:
Martin Vollmayr
Kelly Bickel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kelly Bickel', 18)}}的其他基金
相似国自然基金
基于Rational Krylov法和小波域稀疏约束的时间域海洋电磁三维正反演研究
- 批准号:41804098
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于Rational-Tensor(RTCam)摄像机模型的序列图像间几何框架研究
- 批准号:61072105
- 批准年份:2010
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Advances in rational operations in free analysis
自由分析中理性运算的进展
- 批准号:
2348720 - 财政年份:2024
- 资助金额:
$ 11.97万 - 项目类别:
Standard Grant
CAREER: Rational Design of Dual-Functional Photocatalysts for Synthetic Reactions: Controlling Photosensitization and Reaction with a Single Nanocrystal
职业:用于合成反应的双功能光催化剂的合理设计:用单个纳米晶体控制光敏化和反应
- 批准号:
2339866 - 财政年份:2024
- 资助金额:
$ 11.97万 - 项目类别:
Continuing Grant
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 11.97万 - 项目类别:
Fellowship
Designing Rational Combinations to Improve CAR T Cell Therapy for Prostate Cancer
设计合理的组合以改善前列腺癌的 CAR T 细胞疗法
- 批准号:
10752046 - 财政年份:2024
- 资助金额:
$ 11.97万 - 项目类别:
Computability and the absolute Galois group of the rational numbers
可计算性和有理数的绝对伽罗瓦群
- 批准号:
2348891 - 财政年份:2024
- 资助金额:
$ 11.97万 - 项目类别:
Continuing Grant
Rational GAGA and Applications to Field Invariants
Rational GAGA 及其在场不变量中的应用
- 批准号:
2402367 - 财政年份:2024
- 资助金额:
$ 11.97万 - 项目类别:
Continuing Grant
REVOLUPHON - Rational Evolutionary Phonology
REVOLUPHON - 理性进化音韵学
- 批准号:
EP/Y02429X/1 - 财政年份:2024
- 资助金额:
$ 11.97万 - 项目类别:
Research Grant
Control of linear and nonlinear physical properties based on rational design
基于合理设计的线性和非线性物理特性的控制
- 批准号:
23K04688 - 财政年份:2023
- 资助金额:
$ 11.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Rational Design of Heterogeneous Catalysts for Sustainable Applications
可持续应用多相催化剂的合理设计
- 批准号:
2900533 - 财政年份:2023
- 资助金额:
$ 11.97万 - 项目类别:
Studentship
Rational Heterogeneity of Membrane Electrode Assemblies for Next-Generation Polymer Electrolyte Fuel Cells (HETEROMEA)
下一代聚合物电解质燃料电池膜电极组件的合理异质性(HETEROMEA)
- 批准号:
EP/X023656/1 - 财政年份:2023
- 资助金额:
$ 11.97万 - 项目类别:
Research Grant