Selective Fundamental Problems in Supramolecular Assembly and Phase Stability of Homopolymer Mixtures
均聚物混合物的超分子组装和相稳定性的选择性基本问题
基本信息
- 批准号:1363012
- 负责人:
- 金额:$ 51.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Karl Freed at the University of Chicago is supported by an award from the Chemical Theory, Models and Computational Methods Program to study self-assembly and related phenomena. Equilibrium self-assembly involving the spontaneous organization of molecules into larger structures that show order is a ubiquitous phenomenon pervading chemistry, materials science, and biology. Hence, the ability to control this self-assembly has numerous applications for industry and medicine. The vast array of complex functional structures formed through equilibrium self-assembly suggests that an understanding of the underlying principles can be transformative in designing truly novel materials and medical therapies. This has motivated numerous advanced experimental studies of synthetic self-assembling systems such as nanoparticles, peptides and DNA complexes, the development of transformative strategies for synthesis of macromolecular systems, the synthesis of supramolecular systems with specific properties, and computer simulations of the self-assembly of molecular and larger-scale particles. The last is a focus of the work in the current project. The rapid growth of analytical modeling of self-assembly promises to drive applications forward as one learns to exploit the rich palette of principles, long utilized by nature, to create highly responsive and functional self-organizing and self-healing materials. These advances can greatly improve knowledge concerning diverse problems in soft matter, nanotechnology, biotechnology, medicine, and, when extended to non-equilibrium self-assembly, allow addressing basic processes such as the development of living systems and cell locomotion and communication. The current proposal represents the culmination of a long term research program devoted to developing fundamental theories for predicting thermodynamic properties of homopolymer mixtures and of solutions containing species that can associate with each other or with solvent. Both types of association lead at chemical equilibrium to the formation of clusters of variable size. The theoretical approaches are based either on extensions of Flory-Huggins (FH) theory to self-assembly or on the more detailed lattice cluster theory (LCT), which includes a description of molecular features neglected by FH theory, such as monomer size and shape, chain stiffness, and compressibility effects. The LCT has recently been extended to describe solutions of strongly interacting telechelic polymers (polymers with sticky end groups). The theory aims at elucidating the generic effects of many structurally important binding processes in living systems that are greatly influenced by surrounding chains, confining surfaces, and binding molecules (e.g., proteins that modulate the stability of assemblies). The common general mechanism of mutual association, polymer solubility and hydrophobicity stresses the fundamental nature of the proposed studies of solvation/binding. Competitive molecular binding is also of central significance in elution chromatography, materials synthesis, and biological processes. The proposed research outlines a broad theoretical framework for developing theories that can assist in the rational design of new materials, new drug systems, and physical therapies to mitigate against diseases associated with malfunctioning self-assembly.
芝加哥大学的卡尔·弗里德 (Karl Freed) 获得化学理论、模型和计算方法项目的奖项,以研究自组装和相关现象。平衡自组装涉及分子自发组织成更大的有序结构,是化学、材料科学和生物学中普遍存在的现象。因此,控制这种自组装的能力在工业和医学方面有许多应用。通过平衡自组装形成的大量复杂的功能结构表明,对基本原理的理解可以在设计真正新颖的材料和医学疗法方面带来变革。这推动了对合成自组装系统(如纳米颗粒、肽和 DNA 复合物)的大量先进实验研究,开发了合成大分子系统的变革策略,合成了具有特定性质的超分子系统,以及分子和更大尺度粒子自组装的计算机模拟。 最后是当前项目的工作重点。自组装分析模型的快速发展有望推动应用向前发展,因为人们学会利用自然界长期利用的丰富原理来创建高度响应和功能性的自组织和自修复材料。这些进步可以极大地提高有关软物质、纳米技术、生物技术、医学等各种问题的知识,并且当扩展到非平衡自组装时,可以解决诸如生命系统的发育以及细胞运动和通信等基本过程。目前的提案代表了长期研究计划的顶峰,该计划致力于开发预测均聚物混合物和含有可相互缔合或与溶剂缔合的物质的溶液的热力学性质的基础理论。两种类型的缔合都会导致化学平衡,从而形成不同大小的簇。这些理论方法要么基于 Flory-Huggins (FH) 理论对自组装的扩展,要么基于更详细的晶格簇理论 (LCT),其中包括对 FH 理论忽略的分子特征的描述,例如单体尺寸和形状、链刚度和可压缩性效应。 LCT 最近已扩展到描述强相互作用遥爪聚合物(具有粘性端基的聚合物)的溶液。该理论旨在阐明生命系统中许多结构上重要的结合过程的一般效应,这些过程受到周围链、限制表面和结合分子(例如调节组装体稳定性的蛋白质)的极大影响。相互缔合、聚合物溶解度和疏水性的共同一般机制强调了所提出的溶剂化/结合研究的基本性质。竞争性分子结合在洗脱色谱、材料合成和生物过程中也具有重要意义。拟议的研究概述了一个广泛的理论框架,用于开发理论,帮助合理设计新材料、新药物系统和物理疗法,以减轻与自组装故障相关的疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karl Freed其他文献
Amyloid-β Peptide Interaction with Lipid Bilayer Promotes Peptide Aggregation on the Surface and Modulates Lipid Behavior
- DOI:
10.1016/j.bpj.2017.11.2381 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Jacob Usadi;Arthur Vale;Sashin Natesh;Karl Freed;Esmael Haddadian - 通讯作者:
Esmael Haddadian
The Relationship Between the Number of Residues in the Dynamics and Stability of the A-Beta Amyloid, a Molecular Dynamics Study
- DOI:
10.1016/j.bpj.2011.11.3438 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Esmael J. Haddadian;Wang Zongan;Karl Freed - 通讯作者:
Karl Freed
The Effect of Amyloid Precursor Protein Dimerization on its Conformation and Cleavage
- DOI:
10.1016/j.bpj.2018.11.2669 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Jacob B. Usadi;Karl Freed;Esmael Haddadian - 通讯作者:
Esmael Haddadian
Karl Freed的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karl Freed', 18)}}的其他基金
Taking Supramolecular Assembly to the Next Level: Assembly of Flexible Molecules with Complex Internal Structure and Chemistry
将超分子组装提升到新的水平:具有复杂内部结构和化学性质的柔性分子的组装
- 批准号:
1111918 - 财政年份:2011
- 资助金额:
$ 51.1万 - 项目类别:
Standard Grant
Systematic Theoretical Description of Thermodynamics and Dynamics of Self-Assembly
自组装热力学和动力学的系统理论描述
- 批准号:
0749788 - 财政年份:2008
- 资助金额:
$ 51.1万 - 项目类别:
Continuing Grant
Self-assembly in associating fluids: Transition coupling and branching
缔合流体中的自组装:过渡耦合和分支
- 批准号:
0416017 - 财政年份:2004
- 资助金额:
$ 51.1万 - 项目类别:
Continuing Grant
Theoretical Studies of Excited State Electronic Structure and Dynamics
激发态电子结构与动力学的理论研究
- 批准号:
9727655 - 财政年份:1998
- 资助金额:
$ 51.1万 - 项目类别:
Continuing Grant
Statistical Mechanics of Polymer Systems
聚合物系统的统计力学
- 批准号:
9530403 - 财政年份:1996
- 资助金额:
$ 51.1万 - 项目类别:
Standard Grant
Statistical Mechanics of Polymer Systems
聚合物系统的统计力学
- 批准号:
9223804 - 财政年份:1993
- 资助金额:
$ 51.1万 - 项目类别:
Continuing Grant
Effective Hamiltonian Theory With Applications to Molecular Photodissociation and Spectroscopy
有效的哈密顿理论及其在分子光解和光谱学中的应用
- 批准号:
9307489 - 财政年份:1993
- 资助金额:
$ 51.1万 - 项目类别:
Continuing Grant
U.S.-Korea Cooperative Research on Effective Hamiltonian Theories of Molecular Electronic Structure
美韩合作研究有效的分子电子结构哈密顿理论
- 批准号:
9113106 - 财政年份:1992
- 资助金额:
$ 51.1万 - 项目类别:
Standard Grant
Statistical Mechanics of Polymer Systems
聚合物系统的统计力学
- 批准号:
8919941 - 财政年份:1990
- 资助金额:
$ 51.1万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: Effective Numerical Schemes for Fundamental Problems Related to Incompressible Fluids
合作研究:与不可压缩流体相关的基本问题的有效数值方案
- 批准号:
2309748 - 财政年份:2023
- 资助金额:
$ 51.1万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: General-Purpose Scalable Technologies for Fundamental Graph Problems
合作研究:PPoSS:大型:解决基本图问题的通用可扩展技术
- 批准号:
2316235 - 财政年份:2023
- 资助金额:
$ 51.1万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: General-Purpose Scalable Technologies for Fundamental Graph Problems
合作研究:PPoSS:大型:解决基本图问题的通用可扩展技术
- 批准号:
2316234 - 财政年份:2023
- 资助金额:
$ 51.1万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: General-Purpose Scalable Technologies for Fundamental Graph Problems
合作研究:PPoSS:大型:解决基本图问题的通用可扩展技术
- 批准号:
2316233 - 财政年份:2023
- 资助金额:
$ 51.1万 - 项目类别:
Continuing Grant
Collaborative Research: Effective Numerical Schemes for Fundamental Problems Related to Incompressible Fluids
合作研究:与不可压缩流体相关的基本问题的有效数值方案
- 批准号:
2309747 - 财政年份:2023
- 资助金额:
$ 51.1万 - 项目类别:
Continuing Grant
Mixed contaminants in soil and groundwater - some fundamental problems and their relevance to remediation and treatment
土壤和地下水中的混合污染物 - 一些基本问题及其与修复和处理的相关性
- 批准号:
RGPIN-2018-03832 - 财政年份:2022
- 资助金额:
$ 51.1万 - 项目类别:
Discovery Grants Program - Individual
Using Fundamental Economic Solutions to Solve Real-World Problems
使用基本的经济解决方案来解决现实世界的问题
- 批准号:
RGPIN-2018-06509 - 财政年份:2022
- 资助金额:
$ 51.1万 - 项目类别:
Discovery Grants Program - Individual
Using Fundamental Economic Solutions to Solve Real-World Problems
使用基本的经济解决方案来解决现实世界的问题
- 批准号:
RGPIN-2018-06509 - 财政年份:2021
- 资助金额:
$ 51.1万 - 项目类别:
Discovery Grants Program - Individual
The Construction of a Fundamental Text for the Clarification of the Problems of the Saddharmapundarika: Towards the Revision of the Kern-Nanjio Edition
澄清《法华经》问题的基础文本的构建:迈向克恩-南吉奥版的修订
- 批准号:
21K00058 - 财政年份:2021
- 资助金额:
$ 51.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fundamental Problems in the exact WKB analysis of higher-order equations
高阶方程WKB精确分析的基本问题
- 批准号:
21K13811 - 财政年份:2021
- 资助金额:
$ 51.1万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




