Collaborative Research: Effective Numerical Schemes for Fundamental Problems Related to Incompressible Fluids
合作研究:与不可压缩流体相关的基本问题的有效数值方案
基本信息
- 批准号:2309748
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project aims to develop a novel computational method to investigate the stability of buoyancy-driven fluids and turbulent flows due to electrical conduction, known as magnetohydrodynamic (MHD) turbulence. By accurately simulating these phenomena, the research will provide insights into improving modeling and prediction of extreme weather events such as tornados, astronomical occurrences, phenomena like Northern lights and solar flares, and electrically conducting fluid of plasma and liquid metals. The new computational method will be a valuable tool for the scientific computing community. Graduate students, including those from underrepresented groups, will be trained in both theoretical and computer fields. The research will also engage undergraduates and K-12 students, benefiting local schools and communities.The project aims to investigate numerical methods to solve the incompressible Navier-Stokes equations, delivering the divergence free velocity, provable stability, robustness in high Reynolds numbers, and high efficiency in long-time computations. The research will focus on improving the shortcomings of the classical projection method with the following goals. First, the method will achieve the divergence-free condition. This feature is critical in the accurate simulation of buoyancy-driven fluids. The temperature in these fluids will be transported, rearranged, and stratified by the velocity field, and the enforcement of the divergence-free condition will give a more accurate account of the evolution and the eventual states. Second, this algorithm will be able to handle arbitrarily large Reynolds numbers with high accuracy. The simulations of the 3D Navier-Stokes flows with a high Reynolds number will result in optimal convergence and avoid nonphysical oscillations. Third, stability and error estimates will be established for this scheme, where the results will be independent of the Reynolds numbers. The investigators will apply this numerical method to simulate the buoyancy-driven fluids near the hydrostatic equilibrium and the electrically conducting fluids near a background magnetic field. In the first problem, a Boussinesq-Navier-Stokes system governing the perturbations near the hydrostatic equilibrium will be solved. The Boussinesq system couples the Navier-Stokes equations forced by buoyancy with the temperature transport equation. The numerical method will also be extended to simulate anisotropic flows for which the vertical viscosity is much smaller than the horizontal one. This problem arises in modeling turbulent flows in Ekman layers occurring in the atmosphere and the ocean. In the second problem, the stability and long-time behavior of electrically conducting fluids under a guiding magnetic field will be computed and analyzed. When complemented with rigorous analysis, these simulations will help accelerate the resolution of several open stability problems on the Boussinesq and the MHD equations.This project is jointly funded by the Computational Mathematics program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在开发一种新的计算方法来研究浮力驱动的流体和湍流的稳定性,由于导电,称为磁流体动力学(MHD)湍流。通过准确模拟这些现象,该研究将为改善极端天气事件的建模和预测提供见解,如龙卷风,天文事件,北方光和太阳耀斑等现象,以及等离子体和液态金属的导电流体。新的计算方法将是科学计算界的一个有价值的工具。研究生,包括那些来自代表性不足的群体,将在理论和计算机领域的培训。该项目旨在研究求解不可压缩Navier-Stokes方程的数值方法,提供发散自由速度,可证明的稳定性,高雷诺数下的鲁棒性,以及长时间计算的高效率。本研究将针对传统投影法的不足进行改进,目标如下。首先,该方法将实现无发散条件。这一特性对于精确模拟浮力驱动的流体至关重要。这些流体中的温度将被速度场传输、重新排列和分层,并且无发散条件的实施将更准确地描述演化和最终状态。其次,该算法将能够以高精度处理任意大的雷诺数。对高雷诺数的三维Navier-Stokes流动的模拟将导致最佳收敛并避免非物理振荡。第三,稳定性和误差估计将建立这个计划,其中的结果将是独立的雷诺数。研究人员将应用这种数值方法来模拟流体静力平衡附近的浮力驱动流体和背景磁场附近的导电流体。在第一个问题中,一个Boussinesq-Navier-Stokes系统控制附近的流体静力平衡的扰动将被解决。Boussinesq系统耦合的Navier-Stokes方程与温度输运方程的浮力。数值方法也将扩展到模拟垂直粘度远小于水平粘度的各向异性流。在模拟大气和海洋中发生的Ekman层湍流时会出现这个问题。在第二个问题中,将计算和分析在引导磁场下导电流体的稳定性和长时间行为。如果辅以严格的分析,这些模拟将有助于加速解决关于Boussinesq方程和MHD方程的几个公开的稳定性问题。这个项目是由计算数学计划和刺激竞争研究的既定计划(EPSCoR)共同资助的该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的评估被认为值得支持。影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiahong Wu其他文献
Stabilization of a Background Magnetic Field on a 2 Dimensional Magnetohydrodynamic Flow
二维磁流体动力流背景磁场的稳定
- DOI:
10.1137/20m1324776 - 发表时间:
2020-10 - 期刊:
- 影响因子:2
- 作者:
Nicki Boardman;Hongxia Lin;Jiahong Wu - 通讯作者:
Jiahong Wu
Analytic results related to magneto-hydrodynamic turbulence
- DOI:
10.1016/s0167-2789(99)00158-x - 发表时间:
2000-02 - 期刊:
- 影响因子:0
- 作者:
Jiahong Wu - 通讯作者:
Jiahong Wu
Boundary Control for Optimal Mixing via Navier-Stokes Flows
通过纳维-斯托克斯流实现最佳混合的边界控制
- DOI:
10.1137/17m1148049 - 发表时间:
2018-07 - 期刊:
- 影响因子:2.2
- 作者:
Weiwei Hu;Jiahong Wu - 通讯作者:
Jiahong Wu
Unique weak solutions of the non-resistive magnetohydrodynamic equations with fractional dissipation
具有分数耗散的非电阻磁流体动力学方程的独特弱解
- DOI:
10.4310/cms.2020.v18.n4.a5 - 发表时间:
2019-04 - 期刊:
- 影响因子:0
- 作者:
Quansen Jiu;Xiaoxiao Suo;Jiahong Wu;Huan Yu - 通讯作者:
Huan Yu
Well-posedness of the two-dimensional generalized Benjamin-Bona-Mahony equation on the upper half plane
二维广义Benjamin-Bona-Mahony方程在上半平面上的适定性
- DOI:
10.3934/dcdsb.2016.21.763 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Ying;C. H. A. Cheng;John M. Hong;Jiahong Wu;Juan - 通讯作者:
Juan
Jiahong Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiahong Wu', 18)}}的其他基金
Stabilizing Phenomenon for Incompressible Fluids
不可压缩流体的稳定现象
- 批准号:
2104682 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Regularity Problem on Two Models from Fluid Dynamics
流体动力学两个模型的正则性问题
- 批准号:
1614246 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CBMS Conference: Regularity Problem for Partial Differential Equations Modeling Fluids and Geophysical Fluids
CBMS 会议:偏微分方程模拟流体和地球物理流体的正则性问题
- 批准号:
1342592 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
The Fourth Oklahoma Partial Differential Equations (PDE) Workshop; Oklahoma State University; October 26-27, 2013
第四届俄克拉荷马州偏微分方程 (PDE) 研讨会;
- 批准号:
1338025 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Analysis and Applications of Two Partial Differential Equations Modeling Geophysical Fluids
模拟地球物理流体的两个偏微分方程的分析与应用
- 批准号:
1209153 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
International Conference on Partial Differential Equations Modeling Fluids and Complex Fluids - Xi'an, China, June 2011
偏微分方程模拟流体和复杂流体国际会议 - 中国西安,2011 年 6 月
- 批准号:
1053163 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Oklahoma PDE and Applied Math Workshops
合作研究:俄克拉荷马州偏微分方程和应用数学研讨会
- 批准号:
1135402 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Oklahoma PDE Workshop; October 2009
俄克拉荷马州偏微分方程研讨会;
- 批准号:
0930845 - 财政年份:2009
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Two Partial Differential Equations Modeling Geophysical Fluids
模拟地球物理流体的两个偏微分方程
- 批准号:
0907913 - 财政年份:2009
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Using models and historical data to guide effective monitoring and enhance understanding of deep ocean oxygen variability
合作研究:利用模型和历史数据指导有效监测并增强对深海氧气变化的理解
- 批准号:
2242742 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: An Effective and Efficient Low-Cost Alternate to Cell Aware Test Generation for Cell Internal Defects
协作研究:针对电池内部缺陷的电池感知测试生成有效且高效的低成本替代方案
- 批准号:
2331003 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Spin Gapless Semiconductors and Effective Spin Injection Design for Spin-Orbit Logic
合作研究:FuSe:自旋无间隙半导体和自旋轨道逻辑的有效自旋注入设计
- 批准号:
2328830 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: Using models and historical data to guide effective monitoring and enhance understanding of deep ocean oxygen variability
合作研究:利用模型和历史数据指导有效监测并增强对深海氧气变化的理解
- 批准号:
2242741 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EDU: Dual-track Role-based Learning for Cybersecurity Analysts and Engineers for Effective Defense Operation with Data Analytics
协作研究:SaTC:EDU:网络安全分析师和工程师基于角色的双轨学习,通过数据分析实现有效的防御操作
- 批准号:
2228002 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EDU: Dual-track Role-based Learning for Cybersecurity Analysts and Engineers for Effective Defense Operation with Data Analytics
协作研究:SaTC:EDU:网络安全分析师和工程师基于角色的双轨学习,通过数据分析实现有效的防御操作
- 批准号:
2228001 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
- 批准号:
2310262 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
- 批准号:
2310261 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Enabling High-Impact Collaborative Clinical and Translational Research through Effective Information Management: A Prototype Intervention
通过有效的信息管理实现高影响力的协作临床和转化研究:原型干预
- 批准号:
10637143 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Collaborative Research: An Effective and Efficient Low-Cost Alternate to Cell Aware Test Generation for Cell Internal Defects
协作研究:针对电池内部缺陷的电池感知测试生成有效且高效的低成本替代方案
- 批准号:
2331002 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant