New Directions in Reverse Mathematics and Applied Computability Theory

逆向数学和应用可计算性理论的新方向

基本信息

  • 批准号:
    1400267
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Mathematics today benefits from having "firm foundations", by which we usually mean a system of axioms sufficient to prove the various theorems we care about. But given a particular theorem, can we specify precisely which axioms are needed to derive it? This is a natural question, and also an ancient one: over 2000 years ago, the Greek mathematicians were asking it about Euclid's geometry. Reverse mathematics is an area of mathematical logic that offers a modern approach to this kind of question, by classifying mathematical theorems according to their logical strength. This offers a deeper insight into the fundamental ideas and methods needed to prove a given theorem. More precisely, reverse mathematics provides a framework in which to compare and contrast results from disparate areas of mathematics, which helps elucidate the underpinnings of various branches of the mathematical sciences, and thereby leads to a better understanding of mathematics and its applications.A striking fact repeatedly demonstrated in this area is that the vast majority of mathematical propositions can be classified into one of a small number of categories. But for some very important and fundamental theorems this is not the case. Dzhafarov's research focuses on theorems of this ?irregular" type, including Ramsey's theorem, various equivalents of the axiom of choice, and principles arising from certain problems in cognitive science. In this project, Dzhafarov will work to achieve a greater understanding of the complexities of these "irregular" theorems, to find new examples of such theorems from previously unexplored areas of mathematics, and to apply the reverse mathematics analysis to questions from outside of mathematics. This will be facilitated by the application of methods from computability theory and proof theory, and by the addition of ideas from various collaborations across a number of areas of pure and applied mathematics, as well as interactions with members of the multidisciplinary University of Connecticut logic group.
今天的数学得益于“坚实的基础”,我们通常指的是足以证明我们所关心的各种定理的公理系统。但是给定一个特定的定理,我们能精确地指出需要哪些公理来推导它吗?这是一个自然的问题,也是一个古老的问题:2000多年前,希腊数学家就曾问过关于欧几里得几何的问题。逆向数学是数学逻辑的一个领域,它通过根据逻辑强度对数学定理进行分类,为这类问题提供了一种现代方法。这为证明给定定理所需的基本思想和方法提供了更深入的见解。更准确地说,反向数学提供了一个框架,在其中比较和对比来自不同数学领域的结果,这有助于阐明数学科学的各个分支的基础,从而导致更好地理解数学及其应用。在这一领域反复证明的一个惊人事实是,绝大多数数学命题可以被归类为少数类别之一。但对于一些非常重要和基本的定理,情况并非如此。Dzhafarov的研究重点是这个定理?“不规则”类型,包括拉姆齐定理,选择公理的各种等价,以及认知科学中某些问题产生的原理。在这个项目中,Dzhafarov将致力于更好地理解这些“不规则”定理的复杂性,从以前未被探索的数学领域找到这些定理的新例子,并将反向数学分析应用于数学以外的问题。这将通过应用可计算理论和证明理论的方法,通过在多个纯数学和应用数学领域的各种合作的想法,以及与康涅狄格大学多学科逻辑小组成员的互动来促进。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Damir Dzhafarov其他文献

Damir Dzhafarov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Damir Dzhafarov', 18)}}的其他基金

FRG: Collaborative Research: Computability-Theoretic Aspects of Combinatorics
FRG:协作研究:组合学的可计算性理论方面
  • 批准号:
    1854355
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1103974
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
  • 项目类别:
    Fellowship Award

相似海外基金

New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
  • 批准号:
    EP/Z000688/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342244
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306378
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342245
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Manchester Metropolitan University and Future Directions CIC KTP 23_24 R3
曼彻斯特城市大学和未来方向 CIC KTP 23_24 R3
  • 批准号:
    10083223
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Knowledge Transfer Network
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306379
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Conference: Future Directions for Mathematics Education Research, Policy, and Practice
会议:数学教育研究、政策和实践的未来方向
  • 批准号:
    2342550
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CAREER: New directions in the study of zeros and moments of L-functions
职业:L 函数零点和矩研究的新方向
  • 批准号:
    2339274
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Participant Support for Biomechanists Outlining New Directions Workshop (USA and Italy: BOND); Naples, Italy; 24-27 September 2023
生物力学专家概述新方向研讨会的参与者支持(美国和意大利:BOND);
  • 批准号:
    2314385
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
  • 批准号:
    2327010
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了