Q-polynomial schemes, coherent configurations, and applications

Q 多项式方案、相干配置和应用

基本信息

  • 批准号:
    1400281
  • 负责人:
  • 金额:
    $ 22.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-15 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

Combinatorics is a broad area of mathematics that has found applications to many other fields such as computer science, statistics, physics, and chemistry. Association schemes and coherent configurations give a unified framework for several areas of combinatorics, such as coding theory, the statistical design of experiments, and finite geometry. This work has the potential to shed light on many problems in other areas of combinatorics, including those mentioned above as well as extremal graph theory. This project will further explore the rich connections between algebra and combinatorics, and help demarcate new directions, problems, and questions, thereby stimulating further interest in the area. Broader impacts include a sharpening of mathematical tools for applications in industry, training of highly qualified graduate students for academia and industry, and undergraduate research opportunities. The interaction between linear and abstract algebra and combinatorics has been a very fruitful area of study and continues to find applications beyond pure mathematics, in physics, computer science, and statistics. In this project, the PI and his team study association schemes and coherent configurations. The first part of the project is a study of association schemes with the so-called Q-polynomial property, a property formally dual to the notion of a distance-regular graph. While distance-regular graphs have been well studied, until the last decade little attention was paid to schemes with the Q-polynomial property that did not also arise from distance-regular graphs. Recent results suggest that these objects are of interest in and of themselves, and that the surprising structure of these schemes merits further exploration. The PI will continue the search for new examples of Q-polynomial schemes, with particular emphasis on those that arise from groups. The search will be complemented by work to characterize Q-polynomial schemes. The second part of the project concerns extending results of association schemes to the more general notion of coherent configurations, a natural generalization of association schemes. In particular, the PI will explore further applications of the recently discovered semidefinite bound in coherent configurations.
组合数学是一个广泛的数学领域,它已经应用于许多其他领域,如计算机科学,统计学,物理学和化学。关联方案和相干配置为组合学的几个领域提供了一个统一的框架,如编码理论,实验的统计设计和有限几何。这项工作有可能阐明许多问题,在其他领域的组合,包括上述以及极值图论。这个项目将进一步探索代数和组合学之间的丰富联系,并帮助划分新的方向,问题和问题,从而激发对该领域的进一步兴趣。更广泛的影响包括锐化数学工具在工业中的应用,为学术界和工业界培养高素质的研究生,以及本科生的研究机会。线性和抽象代数与组合学之间的相互作用一直是一个非常富有成果的研究领域,并继续在物理学,计算机科学和统计学中找到超越纯数学的应用。在这个项目中,PI和他的团队研究关联方案和相干配置。该项目的第一部分是研究具有所谓的Q-多项式性质的关联方案,该性质正式对偶于距离正则图的概念。虽然距离正则图已经得到了很好的研究,但直到最近十年,很少有人注意到距离正则图中没有出现的Q-多项式性质。最近的结果表明,这些对象本身是感兴趣的,这些计划的令人惊讶的结构值得进一步探索。PI将继续寻找Q-多项式方案的新例子,特别强调那些来自群体的方案。搜索将补充工作的特点Q-多项式计划。该项目的第二部分涉及扩展关联方案的结果,更一般的概念,连贯的配置,一个自然的概括的关联方案。特别是,PI将探索最近发现的半定界在相干配置的进一步应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Williford其他文献

The eigenvalues of the graphs <em>D</em>(4,<em>q</em>)
  • DOI:
    10.1016/j.jctb.2017.01.002
  • 发表时间:
    2017-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    G. Eric Moorhouse;Shuying Sun;Jason Williford
  • 通讯作者:
    Jason Williford
The independence number for polarity graphs of even order planes
  • DOI:
    10.1007/s10801-012-0392-y
  • 发表时间:
    2012-08-28
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Sylvia A. Hobart;Jason Williford
  • 通讯作者:
    Jason Williford
New families of <em>Q</em>-polynomial association schemes
  • DOI:
    10.1016/j.jcta.2010.08.001
  • 发表时间:
    2011-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Tim Penttila;Jason Williford
  • 通讯作者:
    Jason Williford
Extremal graphs without 4-cycles
  • DOI:
    10.1016/j.jctb.2013.01.001
  • 发表时间:
    2013-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Frank A. Firke;Peter M. Kosek;Evan D. Nash;Jason Williford
  • 通讯作者:
    Jason Williford
A Classification of Hyperfocused 12-Arcs
  • DOI:
    10.1007/s00373-022-02547-2
  • 发表时间:
    2022-08-28
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Philip DeOrsey;Stephen G. Hartke;Jason Williford
  • 通讯作者:
    Jason Williford

Jason Williford的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Williford', 18)}}的其他基金

Rocky Mountain Summer School 2013: Algebraic Graph Theory
2013 年落基山暑期学校:代数图论
  • 批准号:
    1301674
  • 财政年份:
    2013
  • 资助金额:
    $ 22.81万
  • 项目类别:
    Standard Grant

相似国自然基金

Non-coherent网络中的纠错码及其应用
  • 批准号:
    60972011
  • 批准年份:
    2009
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Mathematical analyses on one-bit secret sharing schemes and their extensions
一位秘密共享方案及其扩展的数学分析
  • 批准号:
    23K10979
  • 财政年份:
    2023
  • 资助金额:
    $ 22.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The influence of fungal networks on the success of tree-planting schemes
真菌网络对植树计划成功的影响
  • 批准号:
    2898803
  • 财政年份:
    2023
  • 资助金额:
    $ 22.81万
  • 项目类别:
    Studentship
Construction of Post-quantum Signature Schemes based on Lattices
基于格的后量子签名方案构建
  • 批准号:
    EP/X036669/1
  • 财政年份:
    2023
  • 资助金额:
    $ 22.81万
  • 项目类别:
    Research Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309547
  • 财政年份:
    2023
  • 资助金额:
    $ 22.81万
  • 项目类别:
    Standard Grant
Building Predictive Coarse-Graining Schemes for Complex Microbial Ecosystems
为复杂的微生物生态系统构建预测粗粒度方案
  • 批准号:
    2310746
  • 财政年份:
    2023
  • 资助金额:
    $ 22.81万
  • 项目类别:
    Continuing Grant
Iwasawa theory of class group schemes in characteristic p
特征p中的类群方案岩泽理论
  • 批准号:
    2302072
  • 财政年份:
    2023
  • 资助金额:
    $ 22.81万
  • 项目类别:
    Continuing Grant
Research on Cryptographic Schemes with Probabilistically Decryptable Encryption Scheme
概率可解密加密方案的密码方案研究
  • 批准号:
    23K19952
  • 财政年份:
    2023
  • 资助金额:
    $ 22.81万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Fundamentals and applications of tropical schemes
热带计划的基础和应用
  • 批准号:
    EP/X02752X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 22.81万
  • 项目类别:
    Fellowship
Advanced inertial confinement fusion schemes
先进的惯性约束聚变方案
  • 批准号:
    2887053
  • 财政年份:
    2023
  • 资助金额:
    $ 22.81万
  • 项目类别:
    Studentship
Collaborative Research: Effective Numerical Schemes for Fundamental Problems Related to Incompressible Fluids
合作研究:与不可压缩流体相关的基本问题的有效数值方案
  • 批准号:
    2309748
  • 财政年份:
    2023
  • 资助金额:
    $ 22.81万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了