Building Predictive Coarse-Graining Schemes for Complex Microbial Ecosystems
为复杂的微生物生态系统构建预测粗粒度方案
基本信息
- 批准号:2310746
- 负责人:
- 金额:$ 48.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Microbial communities play a defining role in global climate, agriculture, food safety, and environmental health. These systems are highly complex, often composed of hundreds of interacting species, which makes it very difficult to predict their behavior in detail. However, it is known that important ecosystem properties (e.g., the overall production of a nutrient) can sometimes be predicted without tracking every species, instead using simpler, coarse representations. Leveraging such "coarse-grainability" could transform our ability to predict and control these systems, but the phenomenon remains poorly understood: which properties are expected to be coarse-grainable, and under what conditions, is not known. This project will draw on methods of theoretical physics, statistics and learning theory to develop a systematic theory of ecosystem coarse-grainability, validate it experimentally, and translate it into practical software tools disseminated to the broader research community. This work will significantly advance our ability to model and predict the behavior of microbial ecosystems of complexity as found in nature, such as those responsible for global nutrient cycling, nitrogen fixation or other key environmental functions. On a more technical level, the objectives of the project include: (1) Establishing the theoretical and computational methodology for quantifying ecosystem coarse-grainability and identifying the Pareto front of the tradeoff between description complexity and its prediction error for a given community-level observable; (2) Validating this approach in the laboratory, applying it to communities of marine bacteria assembled in hundreds of environments spanning the axes of variation relevant for ocean ecosystems; and finally, (3) Translating the methodology into shareable software for identifying observable-specific predictive coarsening of compositional microbial data. Additionally, this award will support outreach activities targeting students of grades 6-12 in the St Louis area, emphasizing how the pursuit of predictable models of complex systems unites diverse areas of science (math, physics, biology and medicine, including this research), and increase the participation of underrepresented groups in research through the MIT Summer Research Program initiative.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
微生物群落在全球气候、农业、食品安全和环境健康中发挥着决定性作用。这些系统非常复杂,通常由数百个相互作用的物种组成,这使得很难详细预测它们的行为。然而,已知重要的生态系统特性(例如,一种营养素的总产量)有时可以不跟踪每一个物种,而是使用更简单、粗略的表示来预测。利用这种“粗粒度”可以改变我们预测和控制这些系统的能力,但对这种现象仍然知之甚少:哪些属性预计是粗粒度的,以及在什么条件下,尚不清楚。该项目将利用理论物理学、统计学和学习理论的方法,开发一个系统的生态系统粗粒化理论,通过实验对其进行验证,并将其转化为实用的软件工具,传播给更广泛的研究界。这项工作将大大提高我们建模和预测自然界中复杂微生物生态系统行为的能力,例如负责全球营养循环,固氮或其他关键环境功能的微生物生态系统。在技术层面上,该项目的目标包括:(1)建立量化生态系统粗粒度性的理论和计算方法,并确定给定社区级观测值的描述复杂性和预测误差之间的Pareto前沿;(2)在实验室中验证该方法,将其应用于数百个环境中的海洋细菌群落,这些环境跨越与海洋生态系统相关的变化轴;最后,(3)将该方法转化为可共享的软件,用于识别组成微生物数据的可观察特异性预测粗化。此外,该奖项将支持针对圣刘易斯地区6-12年级学生的外展活动,强调对复杂系统可预测模型的追求如何将不同的科学领域结合起来(数学,物理,生物和医学,包括这项研究),并通过麻省理工学院夏季研究计划倡议增加代表性不足的群体在研究中的参与。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Statistically learning the functional landscape of microbial communities
统计了解微生物群落的功能景观
- DOI:10.1038/s41559-023-02197-4
- 发表时间:2023
- 期刊:
- 影响因子:16.8
- 作者:Skwara, Abigail;Gowda, Karna;Yousef, Mahmoud;Diaz-Colunga, Juan;Raman, Arjun S.;Sanchez, Alvaro;Tikhonov, Mikhail;Kuehn, Seppe
- 通讯作者:Kuehn, Seppe
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mikhail Tikhonov其他文献
Functional regimes define soil microbiome response to environmental change
功能型群落决定土壤微生物群落对环境变化的响应
- DOI:
10.1038/s41586-025-09264-9 - 发表时间:
2025-07-16 - 期刊:
- 影响因子:48.500
- 作者:
Kiseok Keith Lee;Siqi Liu;Kyle Crocker;Jocelyn Wang;David R. Huggins;Mikhail Tikhonov;Madhav Mani;Seppe Kuehn - 通讯作者:
Seppe Kuehn
Coarse-graining ecological dynamics in the face of unknown microscopic details
面对未知微观细节的粗粒度生态动力学
- DOI:
10.1101/2021.07.17.452786 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Jacob Moran;Mikhail Tikhonov - 通讯作者:
Mikhail Tikhonov
A model for the interplay between plastic tradeoffs and evolution in changing environments
塑料权衡与不断变化的环境中的演变之间相互作用的模型
- DOI:
10.1073/pnas.1915537117 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Mikhail Tikhonov;S. Kachru;Daniel S. Fisher - 通讯作者:
Daniel S. Fisher
Metabolic rearrangement enables adaptation of microbial growth rate to temperature shifts
代谢重排使微生物生长速率适应温度变化
- DOI:
10.1038/s41564-024-01841-4 - 发表时间:
2024-12-13 - 期刊:
- 影响因子:19.400
- 作者:
Benjamin D. Knapp;Lisa Willis;Carlos Gonzalez;Harsh Vashistha;Joanna Jammal-Touma;Mikhail Tikhonov;Jeffrey Ram;Hanna Salman;Josh E. Elias;Kerwyn Casey Huang - 通讯作者:
Kerwyn Casey Huang
Multi-cellularity without cooperation
无需合作的多细胞性
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Mikhail Tikhonov - 通讯作者:
Mikhail Tikhonov
Mikhail Tikhonov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mikhail Tikhonov', 18)}}的其他基金
CAREER: Harnessing Emergent Simplicity for High-Precision Predictions in High-Diversity Microbial Ecosystems
职业:利用新兴的简单性在高多样性微生物生态系统中进行高精度预测
- 批准号:
2340791 - 财政年份:2024
- 资助金额:
$ 48.58万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 48.58万 - 项目类别:
Standard Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 48.58万 - 项目类别:
Continuing Grant
Anti-infective therapeutics and predictive modelling to tackle Staphylococcus aureus disease
应对金黄色葡萄球菌疾病的抗感染疗法和预测模型
- 批准号:
EP/X022935/2 - 财政年份:2024
- 资助金额:
$ 48.58万 - 项目类别:
Fellowship
Unlocking the sensory secrets of predatory wasps: towards predictive tools for managing wasps' ecosystem services in the Anthropocene
解开掠食性黄蜂的感官秘密:开发用于管理人类世黄蜂生态系统服务的预测工具
- 批准号:
NE/Y001397/1 - 财政年份:2024
- 资助金额:
$ 48.58万 - 项目类别:
Research Grant
Development of a predictive biomarker for Parkinson's disease
帕金森病预测生物标志物的开发
- 批准号:
MR/Y019415/1 - 财政年份:2024
- 资助金额:
$ 48.58万 - 项目类别:
Research Grant
CAREER:HCC: Using Virtual Reality Gaming to Develop a Predictive Simulation of Human-Building Interactions: Behavioral and Emotional Modeling for Public Space Design
职业:HCC:使用虚拟现实游戏开发人类建筑交互的预测模拟:公共空间设计的行为和情感建模
- 批准号:
2339999 - 财政年份:2024
- 资助金额:
$ 48.58万 - 项目类别:
Continuing Grant
Creating healthier homes for children with asthma:Developing a predictive model for environmental
为哮喘儿童创建更健康的家庭:开发环境预测模型
- 批准号:
2908612 - 财政年份:2024
- 资助金额:
$ 48.58万 - 项目类别:
Studentship
Predictive Assessment of Material Failure
材料失效的预测评估
- 批准号:
2904642 - 财政年份:2024
- 资助金额:
$ 48.58万 - 项目类别:
Studentship
CAREER: Predictive Multiscale Modeling of Cell Migration through Pores between Endothelial Cells
职业:通过内皮细胞之间的孔进行细胞迁移的预测多尺度建模
- 批准号:
2339054 - 财政年份:2024
- 资助金额:
$ 48.58万 - 项目类别:
Standard Grant
Mechanistic niche predictive modelling of plant invasion at the range front
山脉前沿植物入侵的机械生态位预测模型
- 批准号:
EP/Y028473/1 - 财政年份:2024
- 资助金额:
$ 48.58万 - 项目类别:
Fellowship