Collaborative Research: Optimal Design of Flaw-tolerant Structures and Material Microarchitectures via Stochastic Topology Optimization

合作研究:通过随机拓扑优化进行容错结构和材料微体系结构的优化设计

基本信息

  • 批准号:
    1400394
  • 负责人:
  • 金额:
    $ 14.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

Topology optimization is a computational process for designing structures and materials that meet some optimality criteria, e.g. minimum weight or maximum stiffness. The technique has gained significant traction among design engineers and has been shown to identify designs where efficient use of materials resulted in unprecedented performance. The objective of this research is to develop a new topology optimization framework capable of designing structural topologies that are robust in the presence of geometric uncertainties. Accounting for dimensional uncertainties in the optimization process is of paramount importance in many engineering applications, for example in processes involving extreme miniaturization of the material architecture, where the physical realization of the optimal design is generally subjected to significant tolerances. The application of this research to state-of-the-art commercially available manufacturing technologies, including additive manufacturing, will greatly impact the development of architected cellular materials and promote technology transfer. Results of this research will be incorporated into graduate courses within the Engineering and Applied Science PhD program at the University of Massachusetts, Dartmouth. This project will provide training for graduate and undergraduate students at UMass Dartmouth (where many students are first generation college students), the University of California, Irvine and Johns Hopkins University.This research will result in a new design optimization framework capable of designing structural topologies that are robust in the presence of geometric uncertainties. A number of strategies will be explored based on novel integration of stochastic analysis and uncertainty representation and propagation methods with efficient topology optimization techniques and inverse homogenization-based material design frameworks. Stochastic topology optimization frameworks for both continuum and discrete structures will be developed where flaw-tolerance is achieved through careful incorporation of nodal and boundary uncertainties. Novel methodologies for the characterization and representation of geometric uncertainties are planned, including an experimental effort aimed at carefully measuring typical geometric flaws in architected cellular materials fabricated with state-of-the-art additive manufacturing techniques, and quantifying their impact on the statistical variations of the macroscopic mechanical properties. This experimental investigation will feed into the development of a topology optimization framework centered on flaw-tolerance.
拓扑优化是设计满足某些优化标准的结构和材料的计算过程,例如最小重量或最大刚度。这项技术在设计工程师中获得了巨大的吸引力,并已被证明可以识别有效使用材料带来前所未有的性能的设计。这项研究的目的是开发一种新的拓扑优化框架,能够设计出在存在几何不确定性的情况下具有健壮性的结构拓扑。考虑优化过程中的尺寸不确定性在许多工程应用中非常重要,例如,在涉及材料结构极端小型化的过程中,最优设计的物理实现通常受到很大的公差限制。将这项研究应用于包括添加剂制造在内的最先进的商业制造技术,将极大地影响建筑结构蜂窝材料的发展,并促进技术转移。这项研究的结果将被纳入马萨诸塞大学达特茅斯分校工程和应用科学博士项目的研究生课程。该项目将为马萨诸塞州大学达特茅斯分校(许多学生是第一代大学生)、加州大学欧文分校和约翰·霍普金斯大学的研究生和本科生提供培训。这项研究将产生一个新的设计优化框架,能够设计出在存在几何不确定性的情况下具有健壮性的结构拓扑。基于随机分析、不确定性表示和传播方法的新集成、高效的拓扑优化技术和基于逆均质化的材料设计框架,将探索一些策略。将开发连续结构和离散结构的随机拓扑优化框架,其中通过仔细合并节点和边界的不确定性来实现缺陷容限。计划采用新的方法来表征和表示几何不确定性,包括一项旨在仔细测量采用最先进的添加制造技术制造的建筑蜂窝材料中的典型几何缺陷的实验工作,并量化它们对宏观机械性能统计变化的影响。这项实验研究将为以容错为中心的拓扑优化框架的开发提供支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Guest其他文献

Tissue bridge widths and outcome after spinal cord injury
脊髓损伤后组织桥宽度与预后
  • DOI:
    10.1016/s1474-4422(24)00260-6
  • 发表时间:
    2024-08-01
  • 期刊:
  • 影响因子:
    45.500
  • 作者:
    James Guest
  • 通讯作者:
    James Guest
28. International perspectives on the current practice of acute spinal cord injury management: results of a global survey
  • DOI:
    10.1016/j.spinee.2022.06.042
  • 发表时间:
    2022-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nader Hejrati;Ali Moghaddamjou;James Guest;Brian K. Kwon;James S. Harrop;Vafa Rahimi-Movaghar;Bizhan Aarabi;Michael G. Fehlings
  • 通讯作者:
    Michael G. Fehlings
Rapid seagrass meadow expansion in an Indian Ocean bright spot
印度洋亮点海草草甸快速扩张
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Matthew Floyd;Holly K. East;Dimosthenis Traganos;Azim Musthag;James Guest;Aminath S. Hashim;Vivienne Evans;Stephanie Helber;R. Unsworth;Andrew J. Suggitt
  • 通讯作者:
    Andrew J. Suggitt
Live slow, die old: larval propagation of slow-growing, stress-tolerant corals for reef restoration
活得慢,死得老:生长缓慢、耐压珊瑚的幼虫繁殖,用于珊瑚礁恢复
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    James Guest;M. Baria‐Rodriguez;T. Toh;Dexter W Dela Cruz;K. Vicentuan;Edgardo D. Gomez;Ronald Villanueva;Peter Steinberg;Alasdair Edwards
  • 通讯作者:
    Alasdair Edwards
Restoration as a meaningful aid to ecological recovery of coral reefs
恢复是对珊瑚礁生态恢复的有意义的援助
  • DOI:
    10.1038/s44183-024-00056-8
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Suggett;James Guest;E. Camp;Alasdair Edwards;Liz Goergen;M. Hein;A. Humanes;Jessica S. Levy;P. Montoya;David J. Smith;Tali Vardi;R. S. Winters;Tom Moore
  • 通讯作者:
    Tom Moore

James Guest的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Guest', 18)}}的其他基金

The Coralassist Plug: overcoming mortality bottlenecks for coral IVF and reef restoration
Coralassist Plug:克服珊瑚体外受精和珊瑚礁恢复的死亡率瓶颈
  • 批准号:
    EP/Y015290/1
  • 财政年份:
    2023
  • 资助金额:
    $ 14.8万
  • 项目类别:
    Research Grant
Workshop on Grant Proposal Writing at the 2022 Engineering Mechanics Institute Conference; Baltimore, Maryland; 31 May to 3 June 2022
2022年工程力学学会会议资助提案写作研讨会;
  • 批准号:
    2222063
  • 财政年份:
    2022
  • 资助金额:
    $ 14.8万
  • 项目类别:
    Standard Grant
Scaling-up restorative assisted evolution on Anthropocene coral reefs
扩大人类世珊瑚礁的恢复辅助进化
  • 批准号:
    NE/T014547/1
  • 财政年份:
    2020
  • 资助金额:
    $ 14.8万
  • 项目类别:
    Research Grant
GOALI/Collaborative Research: Topology Optimization for Additively Manufactured Metal Castings
GOALI/合作研究:增材制造金属铸件的拓扑优化
  • 批准号:
    1462453
  • 财政年份:
    2015
  • 资助金额:
    $ 14.8万
  • 项目类别:
    Standard Grant
Design of 3D Woven Lattices with Optimized Damping Properties
具有优化阻尼性能的 3D 编织网格设计
  • 批准号:
    1538367
  • 财政年份:
    2015
  • 资助金额:
    $ 14.8万
  • 项目类别:
    Standard Grant
Optimal Topology Design under Fabrication and Demand Uncertainties
制造和需求不确定性下的最优拓扑设计
  • 批准号:
    0928613
  • 财政年份:
    2009
  • 资助金额:
    $ 14.8万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
  • 批准号:
    2323415
  • 财政年份:
    2024
  • 资助金额:
    $ 14.8万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
  • 批准号:
    2344765
  • 财政年份:
    2024
  • 资助金额:
    $ 14.8万
  • 项目类别:
    Standard Grant
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
  • 批准号:
    2341950
  • 财政年份:
    2024
  • 资助金额:
    $ 14.8万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
  • 批准号:
    2344766
  • 财政年份:
    2024
  • 资助金额:
    $ 14.8万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
  • 批准号:
    2323414
  • 财政年份:
    2024
  • 资助金额:
    $ 14.8万
  • 项目类别:
    Standard Grant
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
  • 批准号:
    2341951
  • 财政年份:
    2024
  • 资助金额:
    $ 14.8万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER--Evaluation of Optimal Mesonetwork Design for Monitoring and Predicting North American Monsoon (NAM) Convection Using Observing System Simulation
合作研究:EAGER——利用观测系统模拟监测和预测北美季风(NAM)对流的最佳中观网络设计评估
  • 批准号:
    2308410
  • 财政年份:
    2023
  • 资助金额:
    $ 14.8万
  • 项目类别:
    Standard Grant
Collaborative Research: ECCS: Small: Personalized RF Sensing: Learning Optimal Representations of Human Activities and Ethogram on the Fly
合作研究:ECCS:小型:个性化射频传感:学习人类活动的最佳表示和动态行为图
  • 批准号:
    2233503
  • 财政年份:
    2023
  • 资助金额:
    $ 14.8万
  • 项目类别:
    Standard Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
  • 批准号:
    2246606
  • 财政年份:
    2023
  • 资助金额:
    $ 14.8万
  • 项目类别:
    Standard Grant
Collaborative Research: An Optimal Algorithm for Orthogonal Eigenvectors of Symmetric Tridiagonals
协作研究:对称三对角线正交特征向量的最优算法
  • 批准号:
    2309596
  • 财政年份:
    2023
  • 资助金额:
    $ 14.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了