Sharp inequalities for derivatives and potentials in the critical cases of the Sobolev embedding theorem

索博列夫嵌入定理关键情况下导数和势的尖锐不等式

基本信息

  • 批准号:
    1401035
  • 负责人:
  • 金额:
    $ 16.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

Many real world phenomena are modeled using partial differential equations, equations that involve functions and their derivatives. For practical purposes it is extremely important to understand the behavior of the solutions of such equations. Even though it is often impossible to compute these solutions explicitly, a great deal of information can be garnered from quantitative estimates on their size, usually by means of inequalities. The purpose of this research is to obtain many new optimal inequalities related to fundamental equations in mathematics, physics, and geometry: from equations describing the curvature of a surface, to mean-field equations arising in vortex models for turbulent flows, and more. The estimates to be obtained are sharp (i.e., they cannot be improved), and they incorporate deep information about the underlying geometric and physical models. In this project, the principal investigator seeks to find best constants in several Adams, Moser-Trudinger, and Onofri inequalities in various settings, sharp asymptotics for fundamental solutions of differential and pseudodifferential operators, and optimal embeddings of Sobolev spaces in rearrangement invariant spaces. On the Cauchy-Riemann sphere, sharp inequalities are to be obtained for rather general spectrally defined pseudodifferential operators, featuring best constants that depend explicitly on the eigenvalues. The method includes a new asymptotic analysis of the fundamental solutions of such operators. On Euclidean spaces, sharp inequalities will be obtained on domains of infinite measure, filling a twenty-five-year-old gap that was left since Adams's seminal work. The methods are new, and they are powerful enough to allow extensions to other noncompact settings such as the Heisenberg group and spaces endowed with hyperbolic metrics. Sharp Brezis-Merle-type inequalities and optimal embeddings are to be obtained on reduced Sobolev spaces of barely integrable functions. The method is based on a new theory of Adams- and Orlicz-type inequalities on general measure spaces, for integral operators with slowly varying kernels.
许多现实世界的现象都是用偏微分方程式来模拟的,偏微分方程式涉及到函数及其导数。出于实际目的,了解这类方程的解的性态是极其重要的。尽管通常不可能显式地计算这些解,但从对其大小的定量估计中可以获得大量信息,通常是通过不等式的方式。这项研究的目的是获得许多与数学、物理和几何中的基本方程有关的新的最优不等式:从描述曲面曲率的方程,到湍流涡流模型中产生的平均场方程,等等。将获得的估计是尖锐的(即,它们不能被改进),并且它们包含了关于基本几何和物理模型的深入信息。在这个项目中,主要的研究人员试图在不同的环境下找到几个Adams,Moser-Trudinger和Onofri不等式中的最佳常数,微分和伪微分算子基本解的尖锐渐近性,以及Sobolev空间在重排不变空间中的最优嵌入。在Cauchy-Riemann球面上,得到了相当一般谱定义的拟微分算子的尖锐的不等式,其特征是最佳常数显式地依赖于本征值。该方法包括对这类算子基本解的一种新的渐近分析。在欧几里得空间上,将在无穷测度域上得到尖锐的不等式,填补了自亚当斯开创性工作以来留下的一个长达25年的空白。这些方法是新的,它们足够强大,可以扩展到其他非紧致环境,如海森堡群和赋予双曲度量的空间。在几乎可积函数的约化Soblev空间上,得到了尖锐的Brezis-Merle型不等式和最优嵌入。该方法基于一般度量空间上的Adams和Orlicz型不等式的一个新理论,适用于具有缓变核的积分算子。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carlo Morpurgo其他文献

Local Extrema of Traces of Heat Kernels onS2
S2 上热核痕迹的局部极值
  • DOI:
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Carlo Morpurgo
  • 通讯作者:
    Carlo Morpurgo
Moser–Trudinger inequalities: from local to global
  • DOI:
    10.1007/s10231-024-01481-9
  • 发表时间:
    2024-07-30
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Luigi Fontana;Carlo Morpurgo;Liuyu Qin
  • 通讯作者:
    Liuyu Qin
An uncertainty inequality involving $L^1$ norms
涉及 $L^1$ 范数的不确定性不等式
  • DOI:
    10.1090/s0002-9939-99-05022-4
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Carlo Morpurgo;E. Laeng
  • 通讯作者:
    E. Laeng
Self-intersections of the Riemann zeta function on the critical line
黎曼 zeta 函数在临界线上的自交

Carlo Morpurgo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carlo Morpurgo', 18)}}的其他基金

Sharp Estimates for Eigenvalues, Integrals, and Sobolev Imbeddings
特征值、积分和 Sobolev 嵌入的锐估计
  • 批准号:
    0200574
  • 财政年份:
    2002
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Continuing Grant

相似海外基金

Rural Co-Design and Collaboration: Maximising Rural Community Assets to Reduce Place-Based Health Inequalities
农村共同设计与协作:最大化农村社区资产以减少基于地点的健康不平等
  • 批准号:
    AH/Z505559/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Research Grant
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
  • 批准号:
    10676358
  • 财政年份:
    2024
  • 资助金额:
    $ 16.85万
  • 项目类别:
National Partnership to tackle Health Inequalities in Coastal Communities
国家伙伴关系解决沿海社区的健康不平等问题
  • 批准号:
    AH/Z505419/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Research Grant
Analysing Earnings from Creative Education and Creative Work: Decomposing University, Industry and Social Inequalities.
分析创意教育和创意工作的收入:分解大学、工业和社会不平等。
  • 批准号:
    ES/Z502455/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Fellowship
Bridging the Gender Data Gap: Using Census Data to Understand Gender Inequalities Across the UK
缩小性别数据差距:利用人口普查数据了解英国各地的性别不平等
  • 批准号:
    ES/Z502753/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Research Grant
What are the implications of health inequalities such as parental education and household income in BAME 11-16 year old's mental health in Wales
父母教育和家庭收入等健康不平等对威尔士 BAME 11-16 岁心理健康有何影响
  • 批准号:
    2875399
  • 财政年份:
    2024
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Studentship
ReHousIn - Contextualized pathways to reduce housing inequalities in the green and digital transition
ReHousIn - 减少绿色和数字转型中住房不平等的情境化途径
  • 批准号:
    10092240
  • 财政年份:
    2024
  • 资助金额:
    $ 16.85万
  • 项目类别:
    EU-Funded
Making Every Community Asset Count: Improving Health and Reducing Inequalities for People Experiencing Homelessness
让每一项社区资产发挥作用:改善无家可归者的健康并减少不平等
  • 批准号:
    AH/Z505389/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Research Grant
Tackling Health Inequalities with and for the Deaf BSL-Using Communities in Wales
与威尔士使用 BSL 的聋人社区一起解决健康不平等问题
  • 批准号:
    AH/Z505432/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Research Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了