Sharp Estimates for Eigenvalues, Integrals, and Sobolev Imbeddings
特征值、积分和 Sobolev 嵌入的锐估计
基本信息
- 批准号:0200574
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-15 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The author proposes to work on various extremal problemsfor functionals which are defined in terms of integralsor eigenvalues. These problems include: Lieb-Thirringinequalities for the number bound states of Schrodinger operators; sharp Moser-Trudinger and Sobolev inequalitiesfor the CR sphere, with applications to determinants of CR invariant operators; sharp inequalities for integralsinvolving cross-ratios, with applications to zeta functionsof Laplacians on the sphere; sharp inequalities of log-Sobolevtype on the disk, with applications to zeta functions ofDirichlet and Neumann Laplacians on the disk; dimension-free Carleson measure inequalities. The research willtouch on important questions arising in differentialgeometry, harmonic analysis, and mathematical physics.It is difficult to understate the importance of eigenvalueestimates in both applied and theoretical sciences. It isvery often the case that to given physical structures, suchas systems of particles, vibrating membranes, or strings,one can attach certain characteristic numerical values,called "eigenvalues". These numbers are important, as somerelevant properties of a given structure can be often codedinto numerical functions of the eigenvalues, called"spectral functionals". In an extremal problem one triesto find out which structures of the same type wouldyield the highest (or lowest) possible spectral functionals; very often, they are the ones with exhibit the mostsymmetrical geometry.
作者建议研究用积分或本征值定义的泛函的各种极值问题。这些问题包括:关于薛定谔算子有界态的Lieb-Thirring型不等式;关于CR球面的尖端的Moser-Trudinger和Soblev不等式,及其在CR不变算符的行列式中的应用;涉及交叉比的积分的尖端不等式,及其在球面上的Laplian函数的Zeta函数上的应用;圆盘上的对数-Sobolev型的尖端不等式,以及对圆盘上的Dirichlet和Neumann LaPlacian的Zeta函数的应用;无量纲Carleson测度不等式。这项研究将涉及微分几何、调和分析和数学物理中出现的重要问题。很难低估特征值估计在应用科学和理论科学中的重要性。通常的情况是,对于给定的物理结构,例如粒子系统、振膜或弦,人们可以附加某些特征数值,称为“本征值”。这些数字很重要,因为给定结构的随机性通常可以编码成本征值的数值函数,称为“谱泛函”。在极值问题中,人们试图找出同一类型的哪些结构可能具有最高(或最低)可能的谱泛函;通常,它们是表现出最对称几何形状的结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlo Morpurgo其他文献
Local Extrema of Traces of Heat Kernels onS2
S2 上热核痕迹的局部极值
- DOI:
- 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
Carlo Morpurgo - 通讯作者:
Carlo Morpurgo
Moser–Trudinger inequalities: from local to global
- DOI:
10.1007/s10231-024-01481-9 - 发表时间:
2024-07-30 - 期刊:
- 影响因子:0.900
- 作者:
Luigi Fontana;Carlo Morpurgo;Liuyu Qin - 通讯作者:
Liuyu Qin
An uncertainty inequality involving $L^1$ norms
涉及 $L^1$ 范数的不确定性不等式
- DOI:
10.1090/s0002-9939-99-05022-4 - 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Carlo Morpurgo;E. Laeng - 通讯作者:
E. Laeng
Self-intersections of the Riemann zeta function on the critical line
黎曼 zeta 函数在临界线上的自交
- DOI:
10.1016/j.jmaa.2013.04.083 - 发表时间:
2012 - 期刊:
- 影响因子:1.3
- 作者:
W. Banks;Victor Castillo;L. Fontana;Carlo Morpurgo - 通讯作者:
Carlo Morpurgo
Carlo Morpurgo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlo Morpurgo', 18)}}的其他基金
Sharp inequalities for derivatives and potentials in the critical cases of the Sobolev embedding theorem
索博列夫嵌入定理关键情况下导数和势的尖锐不等式
- 批准号:
1401035 - 财政年份:2014
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Improving Estimates of Changing Firn Meltwater Storage and Flux in Temperate Glacier Systems
职业:改进对温带冰川系统中冰雪融水储存和通量变化的估计
- 批准号:
2239668 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
The Phenomenon of Stem Cell Aging according to Methylation Estimates of Age After Hematopoietic Stem Cell Transplantation
根据造血干细胞移植后甲基化年龄估算干细胞衰老现象
- 批准号:
23K07844 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Towards establishing accurate estimates of national chronic hepatitis B prevalence and undiagnosed proportion in Canada
准确估计加拿大全国慢性乙型肝炎患病率和未确诊比例
- 批准号:
488763 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Operating Grants
FUTURE-FLOOD: New estimates of evolving UK flood risk for improved climate resilience
未来洪水:对英国不断变化的洪水风险的新估计,以提高气候适应能力
- 批准号:
NE/X014134/1 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Research Grant
Real-World Data Estimates of Racial Fairness with Pharmacogenomics-Guided Drug Policy
以药物基因组学为指导的药物政策对种族公平性的真实世界数据估计
- 批准号:
10797705 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Topological Consequences of Distortion-type Estimates
失真型估计的拓扑后果
- 批准号:
2247469 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Methods for deterministic treatment effect estimates for clinical trials with missing data
缺失数据的临床试验的确定性治疗效果估计方法
- 批准号:
2886293 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Studentship
Physical-Space Estimates on Black Hole Perturbations
黑洞扰动的物理空间估计
- 批准号:
2306143 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
CAS: Estimates of the decay of diffusion induced flows in strongly stratified fluids and ergodic mixing properties of solutes driven by randomly moving walls in viscous fluids.
CAS:对强分层流体中扩散诱导流的衰减以及粘性流体中随机移动壁驱动的溶质的遍历混合特性的估计。
- 批准号:
2308063 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
al-time epidemiological intelligence to inform control of SARS-CoV-2: improving the precision, validity, and granularity of estimates of the effective reproduction number in Canada
实时流行病学情报为 SARS-CoV-2 的控制提供信息:提高加拿大有效传染数估计的精确度、有效性和粒度
- 批准号:
495568 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Miscellaneous Programs