Understanding and Modifying the Band Structure of Nano-Graphene Ribbons
了解和修改纳米石墨烯带的能带结构
基本信息
- 批准号:1401193
- 负责人:
- 金额:$ 39.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is co-funded by the Electronic and Photonic Materials Program and the Condensed Matter Physics Program.Non-technical Description: Going beyond classical digital electronics to devices based on quantum switches is a goal of modern materials research. Graphene grown on trenches etched in silicon carbide have recently shown incredible electronic and magnetic properties that potentially offer a new platform for quantum-based electronics. Conductivities 100 times larger than theoretical predicted maximums are now obtainable. However, the physical origin of these amazing properties is not yet clear. This research project aims to understand the detailed structure of sub-50 nanometer graphene ribbons and to develop new ways to reproducibly grow and alter their electronic properties. The societal impact of developing these graphene ribbons for near room-temperature quantum-switching networks would have far reaching impacts. In addition to the influence on technology, the project will train undergraduate students in this new field, as well as educating high-school science teachers so that they may better advise their students on the rewards of scientific and engineering professions.Technical Description: It has recently been shown that graphene grown on the sidewalls of SiC trenches has exceptional transport properties with mobilities exceeding predicted limits for 2-dimentional graphene by more than two orders of magnitude [Nature 506, 349-354 (2014)]. The high degree of order implied by these exceptional properties offers an opportunity to make significant advances in graphene electronics. However, the physical origin of the novel room-temperature ballistic transport in these ribbons is not understood. This proposal's goal is to correlate the nanostructure of the graphene sidewall ribbons with their measured band structure. The research team intends to uncover the role of strain, substrate bonding, and finite size effects on the electronic properties of these unique ribbons and their spectacular transport. The team uses a broad set of high-resolution surface sensitive probes that allow the research to go beyond transport experiments alone to directly measure their electronic structure. It employs high-resolution angle resolved photoemission to measure their electronic band structure and correlate those results with ribbon structure measured by scanning tunneling microscopy, low energy electron microscopy and transmission electron microscopy.
该项目由电子和光子材料计划和凝聚态物理计划共同资助。非技术描述:超越经典数字电子学到基于量子开关的设备是现代材料研究的目标。在碳化硅蚀刻的沟槽上生长的石墨烯最近显示出令人难以置信的电子和磁性特性,可能为基于量子的电子学提供一个新的平台。现在可以获得比理论预测最大值大 100 倍的电导率。然而,这些令人惊奇的特性的物理起源尚不清楚。该研究项目旨在了解 50 纳米以下石墨烯带的详细结构,并开发可重复生长和改变其电子特性的新方法。开发这些用于近室温量子开关网络的石墨烯带将产生深远的社会影响。除了对技术的影响外,该项目还将培训这一新领域的本科生,并教育高中科学教师,以便他们更好地为学生提供有关科学和工程专业回报的建议。技术描述:最近表明,在碳化硅沟槽侧壁上生长的石墨烯具有卓越的传输特性,其迁移率超出了二维石墨烯的预测极限两个数量级以上[自然] 506, 349-354 (2014)]。这些特殊特性所暗示的高度有序性为石墨烯电子学取得重大进展提供了机会。然而,这些带中新型室温弹道输运的物理起源尚不清楚。该提案的目标是将石墨烯侧壁带的纳米结构与其测量的能带结构相关联。研究小组打算揭示应变、基板键合和有限尺寸效应对这些独特带材的电子特性及其壮观的输运的作用。该团队使用了一系列高分辨率表面敏感探针,使研究能够超越单纯的传输实验,直接测量其电子结构。它采用高分辨率角分辨光电来测量其电子能带结构,并将这些结果与扫描隧道显微镜、低能电子显微镜和透射电子显微镜测量的带结构相关联。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward Conrad其他文献
Increased proinflammatory cytokines present in breast milk of women with atopic/autoimmune disorders may induce gastrointestinal epithelial cell apoptosis
- DOI:
10.1016/s0091-6749(02)81311-2 - 发表时间:
2002-01-01 - 期刊:
- 影响因子:
- 作者:
Victoria Maria Diokno;Maya Srivastava;Alton Melton;Edward Conrad - 通讯作者:
Edward Conrad
Edward Conrad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward Conrad', 18)}}的其他基金
Collaborative Research: Impurity Incorporation into Epitaxial Graphene on SiC
合作研究:SiC 上外延石墨烯的杂质掺入
- 批准号:
1206655 - 财政年份:2012
- 资助金额:
$ 39.99万 - 项目类别:
Continuing Grant
Studies of the Growth and Electronic Properties of Epitaxial Graphene
外延石墨烯的生长和电子性能研究
- 批准号:
1005880 - 财政年份:2010
- 资助金额:
$ 39.99万 - 项目类别:
Continuing Grant
Effect of Defects on the Magnetic Properties of 2D Films Using Patterned Substrates
缺陷对使用图案化基底的 2D 薄膜磁性能的影响
- 批准号:
9623283 - 财政年份:1996
- 资助金额:
$ 39.99万 - 项目类别:
Continuing Grant
Equilibrium and Non-Equilibrium Defect Structure of Metal Surfaces
金属表面的平衡和非平衡缺陷结构
- 批准号:
9211249 - 财政年份:1992
- 资助金额:
$ 39.99万 - 项目类别:
Continuing Grant
High Temperature Stability of Metal Surfaces
金属表面的高温稳定性
- 批准号:
9296221 - 财政年份:1991
- 资助金额:
$ 39.99万 - 项目类别:
Continuing Grant
High Temperature Stability of Metal Surfaces
金属表面的高温稳定性
- 批准号:
9004463 - 财政年份:1990
- 资助金额:
$ 39.99万 - 项目类别:
Continuing Grant
Surface Melting and Surface Roughening
表面熔化和表面粗糙化
- 批准号:
8703750 - 财政年份:1987
- 资助金额:
$ 39.99万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
- 批准号:
2339759 - 财政年份:2024
- 资助金额:
$ 39.99万 - 项目类别:
Continuing Grant
Human functional genomics of post-translationally modifying clinical coding variants: FGx-PTMv
翻译后修饰临床编码变体的人类功能基因组学:FGx-PTMv
- 批准号:
MR/Y031091/1 - 财政年份:2024
- 资助金额:
$ 39.99万 - 项目类别:
Research Grant
DETERMINANTS OF OUTCOME TO DISEASE-MODIFYING THERAPY FOR TRANSTHYRETIN AMYLOIDOSIS CARDIOMYOPATHY
转甲状腺素蛋白淀粉样变性心肌病疾病缓解治疗结果的决定因素
- 批准号:
495435 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
Development of a method for modifying peptides using cation-generating sulfoxides
开发使用产生阳离子的亚砜修饰肽的方法
- 批准号:
23H02609 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The development of novel disease-modifying osteoarthritis drug candidate targeting supersulphides
针对超硫化物的新型缓解骨关节炎候选药物的开发
- 批准号:
23K19677 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Modifying endothelial Piezo 1 function to improve brain perfusion in AD/ADRD
修改内皮 Piezo 1 功能以改善 AD/ADRD 患者的脑灌注
- 批准号:
10658645 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
Development of a novel disease-modifying glycan therapeutic for early at-home intervention of acute vaso-occlusive crisis in sickle cell disease
开发一种新型疾病缓解聚糖疗法,用于镰状细胞病急性血管闭塞危象的早期家庭干预
- 批准号:
10890255 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
Novel Disease-modifying Small Molecules for Treatment of Alzheimer's Disease”
用于治疗阿尔茨海默病的新型疾病修饰小分子 –
- 批准号:
10485602 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
Investigating High-Risk Epigenetic Modifying Alterations on JAK2VF Dependency and Fibrotic Progression in Myeloproliferative Neoplasms (MPNs)
研究骨髓增生性肿瘤 (MPN) 中 JAK2VF 依赖性和纤维化进展的高风险表观遗传修饰改变
- 批准号:
10723901 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
Development of a novel treatment for ameloblastoma by modifying tumor stroma based on CCN2
基于 CCN2 修饰肿瘤基质开发成釉细胞瘤新疗法
- 批准号:
23K09332 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)