Collaborative Research: Electrokinetic Transport and Separation in MEMS-fabricated Nanofluidic Channels
合作研究:MEMS 制造的纳流体通道中的动电传输和分离
基本信息
- 批准号:1402736
- 负责人:
- 金额:$ 24.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-01 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1402736Pennathur/GillespieUCSB/Rush Pres St Luke Med CtrThis project aims to investigate novel separation mechanisms that exist in nanofluidic devices. In such nanochannels, a sample of solution is moved down a slit with two walls that are 10 to 100 nanometers apart. In nanoscale electrokinetic channels, molecules not only interact with each other, but also with the charged walls of the device, to the point that these solid/liquid interface interactions dominate the performance of the device. This project tests whether specially-fabricated nanochannels and novel buffer electrolyte solutions can greatly enhance separation of two similar analyte ions. Specifically, this project aims to embed electrodes in the walls to directly manipulate the wall charge and therefore the relative speed of the analytes. The fabrication technique embeds electrodes into the walls and can produce slit heights of 10 nm. The novel buffer ions will vary in size from small to large and charge from +1 to +3. This project aims to investigate new separation techniques based on nanofluidic ion transport at high surface charge, high ion valence, and confining channels using a synergistic collaboration between theory and experiment. Specifically, experiments will be used to validate a model based on classical (not quantum) density functional theory of fluids. Then, the model will be used to predict new separation mechanisms because exploring the large parameter set by numerical modeling is orders of magnitude faster than using hardware in the lab. Potential mechanisms discovered will be then be validated in the lab and the theory used to understand the physics of separation. This project has the potential to show the full range of what is possible for nanochannel-based separations. Specifically, the fundamental properties of the nanofluidic channels will be explored to define how the electrical double layer can be harnessed for ion transport and analyte separation. If successful, this project will, for the first time, systematically measure how changing surface charge and ion properties like size and valence define the double layer and transport/separation properties. This new basic knowledge will not only be applicable to separation science and engineering, but to any area of physics, chemistry, and biology where electrical double layers play a role. For example, the new physical insights can be applied to heavy metal processing, environmental monitoring, energy conversion, desalination, batteries, and electrochemical supercapacitors to increase their efficiency and possibly lead to new designs. Proposed outreach activities include development of course materials, international activities and high school student outreach. All are well described and appear achievable.
1402736 Pennathur/gillespieucsb/Rush Pres st Luke Med Ctrthis Project旨在研究纳米流体设备中存在的新型分离机制。在这样的纳米通道中,将溶液样品从缝隙中移动,其两个壁相距10到100纳米。在纳米级电动通道中,分子不仅相互相互作用,而且与设备的带电壁相互作用,以至于这些固体/液体界面相互作用占主导地位。该项目测试特殊制作的纳米通道和新型缓冲液溶液是否可以大大增强两个相似的分析物离子的分离。具体而言,该项目旨在将电极嵌入墙壁中,以直接操纵墙电荷,从而直接操纵分析物的相对速度。制造技术将电极嵌入墙壁中,并可以产生10 nm的缝隙高度。新型缓冲液离子的大小从小到大,并且电荷从+1到+3。该项目旨在根据理论和实验之间的协同协作,基于高表面电荷,高离子价,高离子价和限制通道的新分离技术。具体而言,实验将用于验证基于经典(不是量子)密度功能理论的模型。然后,该模型将用于预测新的分离机制,因为与在实验室中使用硬件相比,数值建模设置的大参数的数量级要快。然后将在实验室中验证发现的潜在机制,并将其用于理解分离物理的理论。该项目有可能展示基于纳米通道的分离的全部范围。具体而言,将探索纳米流体通道的基本特性,以定义如何利用电气双层进行离子传输和分析物分离。如果成功的话,该项目将首次系统地衡量更改表面电荷和离子属性(例如大小和价值)如何定义双层和传输/分离属性。这种新的基本知识不仅适用于分离科学和工程,而且适用于电气双层发挥作用的任何物理,化学和生物学领域。例如,新的物理见解可以应用于重金属加工,环境监测,能量转换,脱盐,电池和电化学超级电容器,以提高其效率并可能导致新的设计。拟议的外展活动包括开发课程材料,国际活动和高中生外展活动。所有人都被很好地描述,并且看起来可以实现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sumita Pennathur其他文献
Sumita Pennathur的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sumita Pennathur', 18)}}的其他基金
NUE: Using Peer-to-Peer Support to build NEMS and Consider SEEE Implications of Nanotechnology
NUE:使用点对点支持构建 NEMS 并考虑纳米技术的 SEEE 影响
- 批准号:
1042157 - 财政年份:2011
- 资助金额:
$ 24.51万 - 项目类别:
Standard Grant
相似国自然基金
基于共识主动性学习的城市电动汽车充电、行驶行为与交通网—配电网协同控制策略研究
- 批准号:62363022
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于疏水性低共熔溶剂的毛细管电动色谱手性药物分离体系研究
- 批准号:22374060
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
异构高复合链路通信异常下的网联电动汽车系统动力学与鲁棒调控研究
- 批准号:52372374
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
电动汽车用绕组互补型高速磁通反向永磁电机基础研究
- 批准号:52307043
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超高速电动式磁悬浮系统在多物理场耦合作用下的振动传播机理与解耦策略研究
- 批准号:52302459
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Self-regulated non-equilibrium assembly of chiral colloidal clusters via electrokinetic interactions
合作研究:通过动电相互作用实现手性胶体簇的自我调节非平衡组装
- 批准号:
2314340 - 财政年份:2023
- 资助金额:
$ 24.51万 - 项目类别:
Continuing Grant
Collaborative Research: Self-regulated non-equilibrium assembly of chiral colloidal clusters via electrokinetic interactions
合作研究:通过动电相互作用实现手性胶体簇的自我调节非平衡组装
- 批准号:
2314339 - 财政年份:2023
- 资助金额:
$ 24.51万 - 项目类别:
Continuing Grant
Collaborative Research: Concentration Polarization Induced Electrokinetic Flows around dielectric Surfaces
合作研究:聚光极化引起介电表面周围的动电流
- 批准号:
2127852 - 财政年份:2021
- 资助金额:
$ 24.51万 - 项目类别:
Standard Grant
Collaborative Research: Concentration Polarization Induced Electrokinetic Flows around Dielectric Surfaces
合作研究:浓差极化引起介电表面周围的动电流
- 批准号:
2127825 - 财政年份:2021
- 资助金额:
$ 24.51万 - 项目类别:
Standard Grant
RUI-Collaborative Research-Electrokinetic Transport and Electric Field Control of Ion Motion through the Interior of Single-Walled Carbon Nanotubes
RUI-合作研究-单壁碳纳米管内部离子运动的电动输运和电场控制
- 批准号:
1904453 - 财政年份:2019
- 资助金额:
$ 24.51万 - 项目类别:
Standard Grant