Collaborative Research: Electrokinetic Transport and Separation in MEMS-fabricated Nanofluidic Channels

合作研究:MEMS 制造的纳流体通道中的动电传输和分离

基本信息

  • 批准号:
    1402897
  • 负责人:
  • 金额:
    $ 15.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-06-01 至 2018-05-31
  • 项目状态:
    已结题

项目摘要

1402736Pennathur/GillespieUCSB/Rush Pres St Luke Med CtrThis project aims to investigate novel separation mechanisms that exist in nanofluidic devices. In such nanochannels, a sample of solution is moved down a slit with two walls that are 10 to 100 nanometers apart. In nanoscale electrokinetic channels, molecules not only interact with each other, but also with the charged walls of the device, to the point that these solid/liquid interface interactions dominate the performance of the device. This project tests whether specially-fabricated nanochannels and novel buffer electrolyte solutions can greatly enhance separation of two similar analyte ions. Specifically, this project aims to embed electrodes in the walls to directly manipulate the wall charge and therefore the relative speed of the analytes. The fabrication technique embeds electrodes into the walls and can produce slit heights of 10 nm. The novel buffer ions will vary in size from small to large and charge from +1 to +3. This project aims to investigate new separation techniques based on nanofluidic ion transport at high surface charge, high ion valence, and confining channels using a synergistic collaboration between theory and experiment. Specifically, experiments will be used to validate a model based on classical (not quantum) density functional theory of fluids. Then, the model will be used to predict new separation mechanisms because exploring the large parameter set by numerical modeling is orders of magnitude faster than using hardware in the lab. Potential mechanisms discovered will be then be validated in the lab and the theory used to understand the physics of separation. This project has the potential to show the full range of what is possible for nanochannel-based separations. Specifically, the fundamental properties of the nanofluidic channels will be explored to define how the electrical double layer can be harnessed for ion transport and analyte separation. If successful, this project will, for the first time, systematically measure how changing surface charge and ion properties like size and valence define the double layer and transport/separation properties. This new basic knowledge will not only be applicable to separation science and engineering, but to any area of physics, chemistry, and biology where electrical double layers play a role. For example, the new physical insights can be applied to heavy metal processing, environmental monitoring, energy conversion, desalination, batteries, and electrochemical supercapacitors to increase their efficiency and possibly lead to new designs. Proposed outreach activities include development of course materials, international activities and high school student outreach. All are well described and appear achievable.
1402736 Pennathur/GillespieUCSB/Rush Pres St Luke Med Ctr该项目旨在研究纳米流体设备中存在的新型分离机制。在这样的纳米通道中,溶液样品沿着狭缝向下移动,狭缝的两个壁相距10到100纳米。在纳米级动电通道中,分子不仅彼此相互作用,而且还与设备的带电壁相互作用,以至于这些固/液界面相互作用主导了设备的性能。该项目测试了专门制造的纳米通道和新型缓冲电解质溶液是否可以大大提高两种类似分析物离子的分离。具体而言,该项目旨在将电极嵌入壁中,以直接操纵壁电荷,从而控制分析物的相对速度。该制造技术将电极嵌入壁中,可以产生10 nm的狭缝高度。新型缓冲离子的大小从小到大,电荷从+1到+3不等。该项目旨在研究基于纳米流体离子传输的新分离技术,该技术具有高表面电荷,高离子价和限制通道,使用理论和实验之间的协同合作。具体而言,实验将用于验证基于流体的经典(非量子)密度泛函理论的模型。然后,该模型将用于预测新的分离机制,因为通过数值建模探索大参数集比在实验室中使用硬件快几个数量级。发现的潜在机制将在实验室中得到验证,并将理论用于理解分离的物理学。该项目有可能展示基于纳米通道的分离的全部可能性。具体而言,将探讨纳米流体通道的基本性质,以定义如何利用双电层进行离子传输和分析物分离。如果成功,该项目将首次系统地测量表面电荷和离子性质(如尺寸和价态)的变化如何定义双层和传输/分离特性。这些新的基础知识不仅适用于分离科学和工程,而且适用于物理学、化学和生物学中双电层发挥作用的任何领域。例如,新的物理见解可以应用于重金属加工,环境监测,能源转换,海水淡化,电池和电化学超级电容器,以提高其效率并可能导致新的设计。拟议的外联活动包括编写课程材料、国际活动和高中学生外联活动。所有这些都有很好的描述,似乎是可以实现的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dirk Gillespie其他文献

The Binding Interactions that Maintain the Ec Coupling Junctions in Skeletal Muscle
  • DOI:
    10.1016/j.bpj.2018.11.2071
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Eduardo Rios;Dirk Gillespie;Clara Franzini-Armstrong
  • 通讯作者:
    Clara Franzini-Armstrong
Ryanodine Receptor is a Magnesium Channel: Consequences of Selectivity on Physiology
  • DOI:
    10.1016/j.bpj.2010.12.2445
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Dirk Gillespie
  • 通讯作者:
    Dirk Gillespie
Calcium Spark Termination: Ryanodine Receptor Unitary Flux Dependent Mechanism
  • DOI:
    10.1016/j.bpj.2010.12.3245
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Tao Guo;Dirk Gillespie;Michael Fill
  • 通讯作者:
    Michael Fill
Insights from a Toy Model of Calcium Channels on Sieving Experiments and Eisenman Sequences
  • DOI:
    10.1016/j.bpj.2009.12.1804
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Daniel M. Krauss;Dirk Gillespie
  • 通讯作者:
    Dirk Gillespie
Monte Carlo Simulation of Free Energy Components: Energetics of Selective Binding in a Reduced Model of L-Type Ca Channels
  • DOI:
    10.1016/j.bpj.2009.12.2801
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Janhavi Giri;Bob Eisenberg;Dirk Gillespie;Douglas Henderson;Dezső Boda
  • 通讯作者:
    Dezső Boda

Dirk Gillespie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Self-regulated non-equilibrium assembly of chiral colloidal clusters via electrokinetic interactions
合作研究:通过动电相互作用实现手性胶体簇的自我调节非平衡组装
  • 批准号:
    2314340
  • 财政年份:
    2023
  • 资助金额:
    $ 15.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: Self-regulated non-equilibrium assembly of chiral colloidal clusters via electrokinetic interactions
合作研究:通过动电相互作用实现手性胶体簇的自我调节非平衡组装
  • 批准号:
    2314339
  • 财政年份:
    2023
  • 资助金额:
    $ 15.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: Concentration Polarization Induced Electrokinetic Flows around dielectric Surfaces
合作研究:聚光极化引起介电表面周围的动电流
  • 批准号:
    2127852
  • 财政年份:
    2021
  • 资助金额:
    $ 15.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Concentration Polarization Induced Electrokinetic Flows around Dielectric Surfaces
合作研究:浓差极化引起介电表面周围的动电流
  • 批准号:
    2127825
  • 财政年份:
    2021
  • 资助金额:
    $ 15.02万
  • 项目类别:
    Standard Grant
RUI-Collaborative Research-Electrokinetic Transport and Electric Field Control of Ion Motion through the Interior of Single-Walled Carbon Nanotubes
RUI-合作研究-单壁碳纳米管内部离子运动的电动输运和电场控制
  • 批准号:
    1904453
  • 财政年份:
    2019
  • 资助金额:
    $ 15.02万
  • 项目类别:
    Standard Grant
RUI-Collaborative Research-Electrokinetic Transport and Electric Field Control of Ion Motion through the Interior of Single-Walled Carbon Nanotubes
RUI-合作研究-单壁碳纳米管内部离子运动的电动输运和电场控制
  • 批准号:
    1904545
  • 财政年份:
    2019
  • 资助金额:
    $ 15.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Electrokinetic Transport and Separation in MEMS-fabricated Nanofluidic Channels
合作研究:MEMS 制造的纳流体通道中的动电传输和分离
  • 批准号:
    1402736
  • 财政年份:
    2014
  • 资助金额:
    $ 15.02万
  • 项目类别:
    Standard Grant
Research on efficient removal of contaminant in farmland soil by electrokinetic technique
动电技术高效去除农田土壤污染物的研究
  • 批准号:
    24380134
  • 财政年份:
    2012
  • 资助金额:
    $ 15.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
U.S.-Korea Cooperative Research: Electrokinetic-Enhanced Bioremediation of Metal-Contaminated Soils
美韩合作研究:金属污染土壤的电动增强生物修复
  • 批准号:
    0425994
  • 财政年份:
    2004
  • 资助金额:
    $ 15.02万
  • 项目类别:
    Standard Grant
Research on remediation of contaminated soil using electroconductive zeolite electrode and electrokinetic phenomenon
导电沸石电极修复污染土壤及动电现象研究
  • 批准号:
    15360145
  • 财政年份:
    2003
  • 资助金额:
    $ 15.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了