Dynamic Control of Glycan Biosynthesis with Synthetic RNA Circuitry
利用合成 RNA 电路动态控制聚糖生物合成
基本信息
- 批准号:1402843
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal Number: CBET - 1402843 Principal Investigator: Julius Lucks Institution: Cornell University Title: Dynamic Control of Glycan Biosynthesis with Synthetic RNA Circuitry Of the many proteins that exist inside our bodies, most are decorated with complex sugars called glycans through a process called glycosylation. Glycosylation is often necessary for these proteins to function correctly. For therapeutic use in humans, glycoproteins must have human-like glycans. Thus production is often limited to mammalian cell culture, which is time-consuming, expensive, and susceptible to viral contamination. A strain of Escherichia coli capable of producing human-like glycoproteins could overcome some of these hurdles. This project seeks to take bacterial production of glycosylated proteins to the next level by using state-of-the art techniques in RNA engineering to dynamically optimize the output of the glycosylation pathway. In this project, the investigators will use the principles of RNA engineering to create genetic networks that dynamically tune the expression of glycosylation enzymes as they are needed in order to increase product output and purity. The proposed studies and research training activities are expected to have a broad impact on society, ranging from the science of glycobiology and the engineering science of RNA gene regulation, to the development of human glycotherapeutics. This project will also cultivate the next generation of highly trained graduate students who will be introduced to the broad, interdisciplinary nature of biotechnology research. Moreover, this program will actively and aggressively broaden participation in science and engineering. This will be accomplished by providing interdisciplinary research opportunities for undergraduate students, developing experiential glycoscience learning modules for undergraduate and high school students, and creating a quantitative graduate-level course for biomolecular engineering and synthetic biology. Finally, the development of bacterial glycosylation and RNA engineering for biotechnological applications will be brought to a larger research community through partnership with local biotechnology companies. The long-term goal of this research project is to genetically engineer and optimize bacterial cells for the routine production of authentic human N-linked glycoproteins. To date, the investigators have recreated the earliest steps of this complicated process in Escherichia coli. The objective of this particular application is to maximize the productivity of this pathway by engineering synthetic RNA-based genetic circuitry that will dynamically control the expression of glycosylation enzymes using two distinct strategies. The first will eliminate competitive side reactions by creating distinct stages of glycan construction followed by glycan targeting, which we anticipate will dramatically increase the purity of the glycoproteins produced. In parallel, pathway productivity will be optimized by expressing pathway enzymes 'just-in-time' in the order they are needed as is done in several essential metabolic pathways used by cells. Since glycosylation consists of sequential enzyme steps that take place in different parts of the cell, controlling the dynamics of enzyme expression so that they are most active when needed is expected to significantly boost pathway production. Successful completion of these studies will lead to the development of a novel bacterial glycoprotein expression platform with the potential to overcome many of the limitations of existing eukaryotic platforms. Moreover, the proposed studies and research training activities will impact: (i) biotechnological synthesis of novel glycoconjugates and potential immunostimulating agents for research, industrial and therapeutic applications; (ii) the development of new, broadly applicable strategies that can be used to optimize a wide array of metabolic processes; and (iii) the development of new tools and design principles for engineering genetic circuitry to control cellular behavior with far-reaching potential. Due to the interdisciplinary nature of the project, this award by the Biotechnology, Biochemical, and Biomass Engineering Program of the CBET Division is co-funded by the Systems and Synthetic Biology Program of the Division of Molecular and Cellular Biology.
提案编号:CBET - 1402843首席研究员:Julius Lucks机构:康奈尔大学标题:用合成RNA电路动态控制聚糖生物合成在我们体内存在的许多蛋白质中,大多数通过称为糖基化的过程用称为聚糖的复杂糖进行修饰。糖基化通常是这些蛋白质正确发挥功能所必需的。对于人类的治疗用途,糖蛋白必须具有人样聚糖。因此,生产通常限于哺乳动物细胞培养,这是耗时的,昂贵的,并且容易受到病毒污染。一种能够产生类人糖蛋白的大肠杆菌菌株可以克服这些障碍。 该项目旨在通过使用RNA工程中最先进的技术来动态优化糖基化途径的输出,将细菌生产糖基化蛋白质提升到一个新的水平。在这个项目中,研究人员将使用RNA工程的原理来创建遗传网络,根据需要动态调整糖基化酶的表达,以提高产品产量和纯度。拟议的研究和研究培训活动预计将对社会产生广泛影响,从糖生物学和RNA基因调控工程科学到人类糖疗法的发展。该项目还将培养下一代训练有素的研究生,他们将被介绍到生物技术研究的广泛,跨学科的性质。此外,该计划将积极和积极地扩大科学和工程的参与。这将通过为本科生提供跨学科研究机会,为本科生和高中生开发体验式糖科学学习模块,以及为生物分子工程和合成生物学创建定量研究生课程来实现。最后,将通过与当地生物技术公司的伙伴关系,将细菌糖基化和RNA工程用于生物技术应用的发展带到更大的研究界。该研究项目的长期目标是基因工程和优化细菌细胞,用于常规生产真正的人类N-连接糖蛋白。到目前为止,研究人员已经在大肠杆菌中重现了这一复杂过程的最早步骤。该特定应用的目的是通过工程化基于合成RNA的遗传电路来最大化该途径的生产率,该遗传电路将使用两种不同的策略动态控制糖基化酶的表达。第一个将通过创建聚糖构建的不同阶段,然后通过聚糖靶向来消除竞争性副反应,我们预计这将大大提高所产生的糖蛋白的纯度。平行地,途径生产率将通过以它们所需的顺序“即时”表达途径酶来优化,如在细胞使用的几种基本代谢途径中所做的那样。由于糖基化由发生在细胞不同部位的连续酶步骤组成,因此控制酶表达的动力学,使它们在需要时最活跃,预计将显著促进途径的产生。这些研究的成功完成将导致开发一种新的细菌糖蛋白表达平台,该平台具有克服现有真核平台的许多局限性的潜力。此外,拟议的研究和研究培训活动将影响:(一)用于研究、工业和治疗应用的新型糖缀合物和潜在免疫刺激剂的生物技术合成;(二)开发可用于优化多种代谢过程的新的、广泛适用的战略;以及(iii)开发新的工具和设计原理,用于工程化遗传电路以控制具有深远潜力的细胞行为。由于该项目的跨学科性质,CBET部门的生物技术,生物化学和生物质工程项目的这一奖项由分子和细胞生物学部门的系统和合成生物学项目共同资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julius Lucks其他文献
Julius Lucks的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julius Lucks', 18)}}的其他基金
Transitions: Evolving our Understanding of Dynamic RNA Folding and Function
转变:加深我们对动态 RNA 折叠和功能的理解
- 批准号:
2310382 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
URoL:ASC: The design, development, and societal impact of rapid, in-home, water quality biosensors
URoL:ASC:快速家用水质生物传感器的设计、开发和社会影响
- 批准号:
2319427 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NRT-URoL: Synthesizing Biology Across Scales – A Convergent Synthetic Biology Training Program
NRT-URoL:跨尺度合成生物学 — 融合合成生物学培训计划
- 批准号:
2021900 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
RAPID: Point-of-Need Detection of COVID-19 using CRISPR-Enabled Cell-Free Synthetic Biology
RAPID:使用支持 CRISPR 的无细胞合成生物学对 COVID-19 进行定点检测
- 批准号:
2028651 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: A cell-free synthetic biology platform for water quality monitoring - field testing and validation at the Camp Fire site in Paradise, California
RAPID:协作研究:用于水质监测的无细胞合成生物学平台 - 在加利福尼亚州天堂市 Camp Fire 现场进行现场测试和验证
- 批准号:
1929912 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Uncovering How Riboswitches Exploit Out-of-Equilibrium RNA Folding Pathways to Make Genetic Decisions
合作研究:揭示核糖开关如何利用非平衡 RNA 折叠途径做出遗传决策
- 批准号:
1914567 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
GOALI: Advanced biomanufacturing with inducible feedback promoters
目标:具有诱导反馈启动子的先进生物制造
- 批准号:
1803747 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Uncovering Quantitative Design Principles of RNA Regulators For Synthetic Biology
职业:揭示合成生物学 RNA 调节剂的定量设计原理
- 批准号:
1650040 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: Uncovering Quantitative Design Principles of RNA Regulators For Synthetic Biology
职业:揭示合成生物学 RNA 调节剂的定量设计原理
- 批准号:
1452441 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
The Nuts and Bolts of Bioengineered Systems: A Workshop on Standards in Synthetic Biology; Valencia, Spain- March 8-10, 2015
生物工程系统的具体细节:合成生物学标准研讨会;
- 批准号:
1523345 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
相似海外基金
In vivo glycan engineering at the cell-matrix interface to control stem cell fate
细胞-基质界面的体内聚糖工程控制干细胞命运
- 批准号:
8955575 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Glycan control of stem cell-associated pathways in pancreatic cancer
胰腺癌中干细胞相关通路的聚糖控制
- 批准号:
8986782 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Elucidation of regulation/control mechanisms in glycan-mediated functions of cell-surface biomolecules.
阐明细胞表面生物分子聚糖介导功能的调节/控制机制。
- 批准号:
24770138 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Innovative approach to control virus-infectious diseases by manipulation of glycan function
通过操纵聚糖功能来控制病毒传染病的创新方法
- 批准号:
24570168 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
N-GLYCAN PROCESSING ENZYMES IN GLYCOPROTEIN MATURATION & QUALITY CONTROL
糖蛋白成熟中的 N-聚糖加工酶
- 批准号:
8361789 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
N-GLYCAN PROCESSING ENZYMES IN GLYCOPROTEIN MATURATION & QUALITY CONTROL
糖蛋白成熟中的 N-聚糖加工酶
- 批准号:
8168846 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Investigation and application of virus receptors for infection control by chemical probes regulating glycan function
病毒受体通过调节聚糖功能的化学探针控制感染的研究和应用
- 批准号:
21570146 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Control of Mucin Glycan Branching in Membrane-bound and Secreted Mucins
膜结合和分泌粘蛋白中粘蛋白聚糖分支的控制
- 批准号:
7712798 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Control of Mucin Glycan Branching in Membrane-bound and Secreted Mucins
膜结合和分泌粘蛋白中粘蛋白聚糖分支的控制
- 批准号:
7924753 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
N-GLYCAN PROCESSING ENZYMES IN GLYCOPROTEIN MATURATION & QUALITY CONTROL
糖蛋白成熟中的 N-聚糖加工酶
- 批准号:
7358177 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别: