RUI: Image-Based Strong-Field Adaptive Control of Molecular Dynamics
RUI:基于图像的分子动力学强场自适应控制
基本信息
- 批准号:1404185
- 负责人:
- 金额:$ 12.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical description:Traditional chemical synthesis methods resemble cooking in the sense that the ingredients, mixing methods, temperature, and pressure all may be varied to produce a desired result. Despite control over all of these macroscopic variables there are some chemical processes that remain elusive. Since the invention of the laser in the 1960s, the field of coherent control has sought to use the laser to manipulate chemical dynamics by applying energy of suitable color and duration directly to individual molecules. In this sense, the laser can be thought of as a new type of reagent that drives a chemical reaction. While easily stated, this task has proved challenging. Molecules are complicated and dynamic, making it difficult to determine the correct laser characteristics to drive a particular process. A proven method for approaching this problem is to use experimental feedback to guide an adaptive search of the possible laser pulses. In a physics version of natural selection, laser pulses that provide a better outcome are given an increased chance to survive and have their characteristics contribute to the tailored pulse that ultimately produces the desired outcome. Such a method, however, is only as good as the feedback that drives it. The goal of these studies is to develop enhanced image-based feedback techniques that enable this adaptive approach to coherent control of chemical dynamics. Technical description:The PI has recently developed the ability to use three-dimensional momentum imaging of the laser-molecule reaction products to define the control objective described in the non-technical description above. Using three-dimensional imaging to target a specific final state has led to better understanding of the mechanisms that undergird the laser-based control, especially in situations in which obtaining precise optical spectroscopic feedback is impractical. Increased mechanistic understanding can subsequently lead to better search parameterization, enhancing the adaptive control process. Current efforts are focused on applying image-based adaptive control to study and influence photoisomerization processes in small molecules such as ethylene. By studying photoionization, it is possible to probe how electronic excitation is rapidly converted to nuclear motion, an essential step in many ultrafast chemical processes. Ethylene is particularly interesting as a benchmark molecule for examining the role of conical intersections in these electronic to nuclear energy conversions. These studies will be advanced by using two-pulse experiments, which allow the separation of the ionization step from the subsequent evolution of the molecular ion, which the group hopes to control. Strong-field tunneling ionization of polyatomic molecules often involves multiple molecular orbitals, and studies of these relationships help link the image-based feedback to more specific target states, again with the objective of refining adaptive control methods. A goal of this project will be extending this work to explore the control of laser driven electron rescattering via feedback derived from angle resolved photoelectron distributions. Electron rescattering is an essential part of many ultrasfast laser-based processes, such as high-harmonic generation and the production of attosecond pulses, and therefore control of this sort has a number of potential applications. Finally, as an undergraduate institution, this project helps identify and develop talented students by immersing them in forefront research.
非技术描述:传统的化学合成方法与烹饪相似,因为原料、混合方法、温度和压力都可以改变,以产生所需的结果。尽管控制了所有这些宏观变量,但仍有一些化学过程仍然难以捉摸。自20世纪60年代激光发明以来,相干控制领域一直试图通过将合适的颜色和持续时间的能量直接施加到单个分子上来使用激光来操纵化学动力学。从这个意义上说,激光可以被认为是一种驱动化学反应的新型试剂。虽然这项任务很容易说,但事实证明,它具有挑战性。分子是复杂和动态的,很难确定正确的激光特性来驱动特定的过程。解决这个问题的一种行之有效的方法是使用实验反馈来指导对可能的激光脉冲的自适应搜索。在自然选择的物理版本中,提供更好结果的激光脉冲被给予更多的生存机会,并使其特征有助于定制最终产生预期结果的脉冲。然而,这种方法的效果取决于推动它的反馈。这些研究的目标是开发增强的基于图像的反馈技术,使这种自适应方法能够对化学动力学进行相干控制。技术描述:PI最近开发了使用激光-分子反应产物的三维动量成像来定义上述非技术描述中描述的控制目标的能力。使用三维成像来瞄准特定的最终状态,使人们更好地理解了支撑基于激光的控制的机制,特别是在无法获得精确的光学光谱反馈的情况下。增加对机理的理解可以随后导致更好的搜索参数化,从而增强自适应控制过程。目前的工作集中在应用基于图像的自适应控制来研究和影响乙烯等小分子的光异构化过程。通过研究光致电离,可以探索电子激发是如何迅速转化为核运动的,这是许多超快化学过程中的一个重要步骤。作为检测锥形交叉点在这些电子到核能转换中的作用的基准分子,乙烯尤其令人感兴趣。这些研究将通过使用双脉冲实验来推进,该实验允许将电离步骤与随后分子离子的演化分离,该小组希望控制分子离子的演化。多原子分子的强场隧道电离通常涉及多个分子轨道,对这些关系的研究有助于将基于图像的反馈与更具体的目标状态联系起来,这也是改进自适应控制方法的目标。这个项目的一个目标是扩展这项工作,探索通过角度分辨光电子分布的反馈来控制激光驱动的电子再散射。电子再散射是许多基于超快激光的过程的重要组成部分,例如高次谐波的产生和阿秒脉冲的产生,因此这类控制具有许多潜在的应用。最后,作为一所本科院校,该项目通过让学生沉浸在前沿研究中来帮助他们识别和发展有才华的学生。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Wells其他文献
Eric Wells的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Wells', 18)}}的其他基金
RUI: Strong-Field Control of Intramolecular Dynamics in Polyatomic Molecules
RUI:多原子分子内分子动力学的强场控制
- 批准号:
2309192 - 财政年份:2023
- 资助金额:
$ 12.94万 - 项目类别:
Continuing Grant
MRI: Acquisition of a TPX3Cam for High-Rate Coincidence Velocity Map Imaging
MRI:获取 TPX3Cam 用于高速重合速度图成像
- 批准号:
2018286 - 财政年份:2020
- 资助金额:
$ 12.94万 - 项目类别:
Standard Grant
RUI: Strong-Field Control of Polyatomic Molecules
RUI:多原子分子的强场控制
- 批准号:
2011864 - 财政年份:2020
- 资助金额:
$ 12.94万 - 项目类别:
Continuing Grant
RUI: Understanding and Control of Strong-Field Molecular Ionization
RUI:强场分子电离的理解和控制
- 批准号:
1723002 - 财政年份:2017
- 资助金额:
$ 12.94万 - 项目类别:
Continuing Grant
RUI: Using Imaging Methods to Expose the Molecular Dynamics Arising from Ultrafast Adaptive Control
RUI:使用成像方法揭示超快自适应控制产生的分子动力学
- 批准号:
0969687 - 财政年份:2010
- 资助金额:
$ 12.94万 - 项目类别:
Standard Grant
RUI: Momentum Imaging Studies of Controlled Molecular Fragmentation
RUI:受控分子断裂的动量成像研究
- 批准号:
0653598 - 财政年份:2007
- 资助金额:
$ 12.94万 - 项目类别:
Standard Grant
Diode-Laser Based Experiments in Physics and Chemistry
基于二极管激光的物理和化学实验
- 批准号:
0536303 - 财政年份:2006
- 资助金额:
$ 12.94万 - 项目类别:
Standard Grant
相似国自然基金
基于CE-3及IMAGE卫星地球等离子体层EUV探测数据的反演研究
- 批准号:41904148
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
Raw-Image微小物体高精度位姿测量法
- 批准号:61105029
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
SBIR Phase I: Lightweight Learning-based Camera Image Signal Processing (ISP) for Photon-Limited Imaging
SBIR 第一阶段:用于光子限制成像的轻量级基于学习的相机图像信号处理 (ISP)
- 批准号:
2335309 - 财政年份:2024
- 资助金额:
$ 12.94万 - 项目类别:
Standard Grant
An image-based AI tool to identify stiffness- or age-related mechanotransduction abnormalities in vascular smooth muscle cells
一种基于图像的人工智能工具,用于识别血管平滑肌细胞中与硬度或年龄相关的机械转导异常
- 批准号:
BB/Y513994/1 - 财政年份:2024
- 资助金额:
$ 12.94万 - 项目类别:
Research Grant
Robust Feature Extraction for Visual Localization using Map-based 360-degree Image Transformation
使用基于地图的 360 度图像转换进行视觉定位的鲁棒特征提取
- 批准号:
24K20872 - 财政年份:2024
- 资助金额:
$ 12.94万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D Camera-based Digital Image Correlation for Tissue Characterisation in Robot-Assisted Surgery
基于 3D 相机的数字图像相关,用于机器人辅助手术中的组织表征
- 批准号:
2894727 - 财政年份:2023
- 资助金额:
$ 12.94万 - 项目类别:
Studentship
Development of cell-type identification methods based on visible and near-infrared spectral image
基于可见光和近红外光谱图像的细胞类型识别方法的发展
- 批准号:
23H03766 - 财政年份:2023
- 资助金额:
$ 12.94万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
DL-based CT image formation with characterization and control of resolution and noise
基于深度学习的 CT 图像形成,具有分辨率和噪声的表征和控制
- 批准号:
10666105 - 财政年份:2023
- 资助金额:
$ 12.94万 - 项目类别:
Development of a real-time evaluation method using an AI-based image processing system in liver tumor ablaition
基于人工智能的图像处理系统开发肝脏肿瘤消融实时评估方法
- 批准号:
23K11923 - 财政年份:2023
- 资助金额:
$ 12.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing an innovative standardised image-based measure of adolescent mental health
开发一种基于图像的创新标准化青少年心理健康测量方法
- 批准号:
MR/X028941/1 - 财政年份:2023
- 资助金额:
$ 12.94万 - 项目类别:
Research Grant
Machine learning based image analysis for phenotyping to speed up barley breeding
基于机器学习的图像分析用于表型分析以加速大麦育种
- 批准号:
2869831 - 财政年份:2023
- 资助金额:
$ 12.94万 - 项目类别:
Studentship
An exploration into the experiences, perspectives, and responses of Image - Based Sexual Abuse victims.
探索基于图像的性虐待受害者的经历、观点和反应。
- 批准号:
2885520 - 财政年份:2023
- 资助金额:
$ 12.94万 - 项目类别:
Studentship