RUI: Using Imaging Methods to Expose the Molecular Dynamics Arising from Ultrafast Adaptive Control

RUI:使用成像方法揭示超快自适应控制产生的分子动力学

基本信息

  • 批准号:
    0969687
  • 负责人:
  • 金额:
    $ 13.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-01 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

Shaped ultrafast laser pulses can powerfully influence molecular dynamics, thus allowing access to outcomes not typically available by other means. The complexities of the field-molecule interaction generally make an a priori determination of the required field characteristics impossible, and so adaptive feedback algorithms are often employed to identify the optimal pulse. This technique efficiently selects pulses that enhance the desired pathway. Exactly how this is accomplished, however, is often obscure. This research examines ways to extract mechanistic information from closed-loop control by approaching this problem from the perspective of the feedback signal. By incorporating images into the feedback loop or using vibrational-state specific feedback we can query the search algorithm in very specific ways. Correlation of small changes in the feedback target with changes in the optimal pulse traits can lead to mechanistic insight. Furthermore, the mechanisms underlying the control can be subsequently probed with the power of velocity map imaging (VMI) or cold-target recoil-ion momentum spectroscopy (COLTRIMS). Experiments will be conducted at Kansas State University with much of the pre- and post-experiment work carried out at Augustana College. The primary aim of these experiments is to uncover the fundamentals of the molecular dynamics in these interactions. To this end, we will construct, test, and incorporate into the feedback loop a Doppler-free kinetic energy release spectrometer that is capable of resolving specific vibrational states of CO2+ through its dissociation into C+ + O+. Using this high resolution feedback, we will seek to manipulate the vibrational population and thereby gain a window into the dynamics leading to population of the transient CO2+. Using VMI as feedback allows simultaneous access to angular and kinetic energy release (KER) information for a given ion species. Shaped pulses will be used to control the isomerization of the acetylene di-cation into CH2 + + C+ and the ethylene cation into CH3 + + CH. Both of these processes can be probed with VMI and/or COLTRIMS. Understanding how isomerization is controlled in these benchmark hydrocarbons can provide a foundation for improved control in larger molecules. A concurrent secondary direction will be the implementation of new feedback techniques for adaptive control, such as the rapid inversion of VMI spectra to obtain unambiguous KER data. Broader Impacts: This work integrates undergraduates at all levels, from experiment design to manuscript preparation. Experience has shown that this activity both encourages students to continue their science training and provides a strong background for graduate work. The group has a good record of promoting the participation of women in physics. Scientifically, improved understanding of the molecular dynamics involved in closed-loop coherent control will benefit several applications, including detection of trace amounts of materials with undesirable environmental or national security traits and the use of shaped pulses for the creation of molecular qubits for quantum computing. Improved understanding of how isomerization dynamics can be manipulated could further enable the development of molecular switches and laser-controlled chemical synthesis. Dissemination of results will occur through peer-reviewed publications, conference presentations, and seminars and symposiums that often feature students.
成形的超快激光脉冲可以有力地影响分子动力学,从而允许获得其他方法通常无法获得的结果。由于场-分子相互作用的复杂性,通常不可能先验地确定所需的场特性,因此通常采用自适应反馈算法来识别最佳脉冲。该技术有效地选择增强所需路径的脉冲。然而,这究竟是如何实现的,往往是模糊的。本文从反馈信号的角度出发,探讨了从闭环控制中提取机械信息的方法。通过将图像纳入反馈回路或使用振动状态特定的反馈,我们可以以非常特定的方式查询搜索算法。反馈目标的微小变化与最优脉冲特性的变化之间的相关性可以导致机制的洞察。此外,控制的机制可以随后通过速度图成像(VMI)或冷目标反冲-离子动量谱(COLTRIMS)的力量来探测。实验将在堪萨斯州立大学进行,大部分实验前和实验后的工作将在奥古斯塔纳学院进行。这些实验的主要目的是揭示这些相互作用中分子动力学的基本原理。为此,我们将构建、测试并将一个无多普勒的动能释放光谱仪纳入反馈回路,该光谱仪能够通过分解成c++ O+来分辨CO2+的特定振动状态。利用这种高分辨率反馈,我们将设法操纵振动种群,从而获得一个窗口,进入导致瞬态CO2+种群的动力学。使用VMI作为反馈,可以同时获得给定离子种类的角和动能释放(KER)信息。形状脉冲将用于控制乙炔阳离子转化为CH2 + + C+和乙烯阳离子转化为CH3 + + CH的异构化。这两个过程都可以用VMI和/或COLTRIMS探测。了解这些基准烃的异构化是如何控制的,可以为改进大分子烃的异构化控制提供基础。一个并行的次要方向将是实施新的自适应控制反馈技术,例如快速反演VMI光谱以获得明确的KER数据。更广泛的影响:这项工作整合了各个层次的本科生,从实验设计到论文准备。经验表明,这种活动既鼓励学生继续他们的科学训练,又为研究生工作提供了坚实的背景。该组织在促进妇女参与物理学方面有着良好的记录。科学地说,提高对闭环相干控制中涉及的分子动力学的理解将有利于几个应用,包括检测具有不良环境或国家安全特征的痕量材料,以及使用形状脉冲创建用于量子计算的分子量子位。对如何操纵异构化动力学的更好理解可以进一步促进分子开关和激光控制化学合成的发展。结果的传播将通过同行评议的出版物、会议报告、研讨会和专题讨论会进行,通常以学生为特色。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Wells其他文献

Eric Wells的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Wells', 18)}}的其他基金

RUI: Strong-Field Control of Intramolecular Dynamics in Polyatomic Molecules
RUI:多原子分子内分子动力学的强场控制
  • 批准号:
    2309192
  • 财政年份:
    2023
  • 资助金额:
    $ 13.97万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of a TPX3Cam for High-Rate Coincidence Velocity Map Imaging
MRI:获取 TPX3Cam 用于高速重合速度图成像
  • 批准号:
    2018286
  • 财政年份:
    2020
  • 资助金额:
    $ 13.97万
  • 项目类别:
    Standard Grant
RUI: Strong-Field Control of Polyatomic Molecules
RUI:多原子分子的强场控制
  • 批准号:
    2011864
  • 财政年份:
    2020
  • 资助金额:
    $ 13.97万
  • 项目类别:
    Continuing Grant
RUI: Understanding and Control of Strong-Field Molecular Ionization
RUI:强场分子电离的理解和控制
  • 批准号:
    1723002
  • 财政年份:
    2017
  • 资助金额:
    $ 13.97万
  • 项目类别:
    Continuing Grant
RUI: Image-Based Strong-Field Adaptive Control of Molecular Dynamics
RUI:基于图像的分子动力学强场自适应控制
  • 批准号:
    1404185
  • 财政年份:
    2014
  • 资助金额:
    $ 13.97万
  • 项目类别:
    Continuing Grant
RUI: Momentum Imaging Studies of Controlled Molecular Fragmentation
RUI:受控分子断裂的动量成像研究
  • 批准号:
    0653598
  • 财政年份:
    2007
  • 资助金额:
    $ 13.97万
  • 项目类别:
    Standard Grant
Diode-Laser Based Experiments in Physics and Chemistry
基于二极管激光的物理和化学实验
  • 批准号:
    0536303
  • 财政年份:
    2006
  • 资助金额:
    $ 13.97万
  • 项目类别:
    Standard Grant

相似国自然基金

Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目

相似海外基金

Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
  • 批准号:
    EP/Y036654/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.97万
  • 项目类别:
    Research Grant
Using soft X-ray coherent diffraction imaging to study and tailor the formation of superfluid helium droplets and quantum vortices within them
使用软 X 射线相干衍射成像来研究和定制超流氦液滴及其内部量子涡旋的形成
  • 批准号:
    23K28359
  • 财政年份:
    2024
  • 资助金额:
    $ 13.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
I-Corps: Imaging and locating geothermal resources using distributed acoustic sensing deployed on telecommunication fiber cables
I-Corps:使用部署在电信光缆上的分布式声学传感对地热资源进行成像和定位
  • 批准号:
    2344558
  • 财政年份:
    2024
  • 资助金额:
    $ 13.97万
  • 项目类别:
    Standard Grant
Understanding the coordination of DNA mismatch repair using live-cell single-molecule imaging
使用活细胞单分子成像了解 DNA 错配修复的协调
  • 批准号:
    BB/Y001567/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.97万
  • 项目类别:
    Research Grant
Correlating neuronal activity and large volume nanoscale imaging using AI
使用 AI 将神经元活动与大体积纳米级成像关联起来
  • 批准号:
    BB/Y51391X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.97万
  • 项目类别:
    Research Grant
Multi-scale, multi-modal X-ray imaging using speckle
使用散斑的多尺度、多模态 X 射线成像
  • 批准号:
    DE220101402
  • 财政年份:
    2024
  • 资助金额:
    $ 13.97万
  • 项目类别:
    Discovery Early Career Researcher Award
Spatial pathophysiological study on cardiorenal syndrome using novel tissue glyco-imaging technology
利用新型组织糖成像技术进行心肾综合征的空间病理生理学研究
  • 批准号:
    24K19073
  • 财政年份:
    2024
  • 资助金额:
    $ 13.97万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Understanding dual filament regulation in muscle using single molecule imaging in vitro and in myofibrils
使用体外单分子成像和肌原纤维了解肌肉中的双丝调节
  • 批准号:
    BB/Y001621/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.97万
  • 项目类别:
    Research Grant
DarkSeis: Seismic Imaging Of The Urban Subsurface Using Dark Fibre
DarkSeis:使用暗光纤对城市地下进行地震成像
  • 批准号:
    EP/Y020960/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.97万
  • 项目类别:
    Research Grant
Neurophysiological analysis of oral function improvement using diffusion tensor imaging
使用扩散张量成像对口腔功能改善进行神经生理学分析
  • 批准号:
    23K09291
  • 财政年份:
    2023
  • 资助金额:
    $ 13.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了