Extreme Optical Coherence in Cavity-based Atomic and Molecular Physics

基于腔的原子和分子物理中的极端光学相干性

基本信息

  • 批准号:
    1404263
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

This research program will study a new approach to lasers that promises to produce light with coherence and wavelength control that is two factors of ten better than any system available today. The idea is based on superradiant emission, where an ensemble of atoms with an extremely narrow atomic transition can undergo quantum synchronization. This is like a laser except the coherence is stored in the atoms rather than the light. The past decade has seen remarkable progress in the development of atomic clocks that utilize ultranarrow optical transitions. These systems are now reaching precision and accuracy thresholds that open up many potential future applications, including advanced optical communications, gravitational mapping and geodesy, next-generation time and frequency standards, and advanced navigation and global positioning. The best atomic clocks today and the lasers that probe them are the highest quality coherent oscillators that have ever existed, with intrinsic frequencies in the optical domain and coherence times that can now exceed minutes. The challenge going forward is to continue this impressive technology development and pursue the broad spectrum of practical applications.The ultranarrow intercombination lines of group-II-like atoms confined in optical cavities provide a platform for a revolutionary technology based on the steady-state superradiance from macroscopic atomic ensembles. Such systems promise to dramatically improve atomic clocks since the coherence time could be orders of magnitude longer than the best reference-cavity stabilized lasers achieved to date. Storing the coherence in the atoms rather than the light overcomes the intrinsic sensitivity of reference-cavity stabilized lasers to cavity length noise, which otherwise translates directly into frequency noise on the emitted light.This research program explores this idea to contribute to the general theory of quantum optics systems and more explicitly to the understanding of the quantum theory of the optical laser in the extreme bad-cavity limit. Collaboration with experiment is a key aspect allowing the results to impact directly in the development of applications and devices. The specific goal is to quantitatively layout the landscape that bridges steady-state superradiance and lasing and to thereby explore the variety of potential implementations. A major challenge will be to identify and mitigate quantum noise sources that adversely affect the spectral coherence of the output field.
这个研究项目将研究一种新的激光方法,这种方法有望产生具有相干性和波长控制的光,比目前可用的任何系统都要好上两倍。这个想法是基于超辐射发射,在超辐射发射中,具有极窄原子跃迁的原子集合可以进行量子同步。这就像激光,只不过相干性储存在原子中而不是光中。在过去的十年里,利用超窄光跃迁的原子钟的发展取得了显著的进展。这些系统现在达到了精度和精度阈值,开辟了许多潜在的未来应用,包括先进的光通信,重力测绘和大地测量,下一代时间和频率标准,以及先进的导航和全球定位。目前最好的原子钟和探测原子钟的激光器都是迄今为止质量最高的相干振荡器,其内在频率在光域中,相干时间现在可以超过分钟。未来的挑战是继续这一令人印象深刻的技术发展,并追求广泛的实际应用。类族原子在光学腔中的超狭互合线为基于宏观原子系综的稳态超辐射的革命性技术提供了一个平台。这样的系统有望极大地改善原子钟,因为相干时间可能比迄今为止最好的参考腔稳定激光器长几个数量级。将相干性存储在原子中而不是光中,克服了参考腔稳定激光器对腔长噪声的固有灵敏度,否则腔长噪声直接转化为发射光的频率噪声。本研究计划探索这一思想,以促进量子光学系统的一般理论,并更明确地理解极端坏腔极限下光学激光器的量子理论。与实验的协作是一个关键方面,允许结果直接影响应用程序和设备的开发。具体目标是定量地布局连接稳态超辐射和激光的景观,从而探索各种潜在的实现。一个主要的挑战将是识别和减轻对输出场的光谱相干性产生不利影响的量子噪声源。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Murray Holland其他文献

Machine learning designed optical lattice atom interferometer
机器学习设计的光学晶格原子干涉仪
  • DOI:
    10.1117/12.3003353
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    V. Colussi;Justin Copenhaver;Maximilian Seifert;Michael Perlin;Murray Holland
  • 通讯作者:
    Murray Holland
Feshbach resonances and collapsing Bose-Einstein condensates
费什巴赫共振和坍缩玻色-爱因斯坦凝聚
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Milstein;C. Menotti;Murray Holland
  • 通讯作者:
    Murray Holland
Momentum distribution of a Fermi gas of atoms in the BCS-BEC crossover.
BCS-BEC 交叉中原子费米气体的动量分布。
  • DOI:
    10.1103/physrevlett.95.250404
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    C. Regal;M. Greiner;S. Giorgini;Murray Holland;Deborah Jin
  • 通讯作者:
    Deborah Jin
Quantum phase transitions in the Fermi–Bose Hubbard model
费米-玻色哈伯德模型中的量子相变
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lincoln D. Carr;Murray Holland
  • 通讯作者:
    Murray Holland
Role of attractive interactions on Bose-Einstein condensation.
吸引相互作用对玻色-爱因斯坦凝聚的作用。

Murray Holland的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Murray Holland', 18)}}的其他基金

Applications of Superradiant Lasers for Inertial Sensing
超辐射激光器在惯性传感中的应用
  • 批准号:
    2207963
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Dynamical Laser Cooling of Ultranarrow Linewidth Atoms and Molecules
超窄线宽原子和分子的动态激光冷却
  • 批准号:
    1806827
  • 财政年份:
    2018
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Theory of the Crossover from Lasing to Steady-State Superradiance
从激光到稳态超辐射的交叉理论
  • 批准号:
    1068560
  • 财政年份:
    2011
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Theoretical Atomic, Molecular, and Optical Physics at JILA
JILA 理论原子、分子和光学物理
  • 批准号:
    0855664
  • 财政年份:
    2009
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Theoretical Atomic, Molecular, and Optical Physics at JILA
JILA 理论原子、分子和光学物理
  • 批准号:
    0758117
  • 财政年份:
    2008
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
US-France Cooperative Research: Cold Atom Dissertation Enhancement
美法合作研究:冷原子论文增强
  • 批准号:
    0334050
  • 财政年份:
    2003
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Operating an Optical Atomic Clock Beyond the Laser Coherence and below the Projection Limit
职业:操作超出激光相干性且低于投影极限的光学原子钟
  • 批准号:
    2339487
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Reflectance confocal microscopy-optical coherence tomography (RCM-OCT) imaging of oral lesions: Toward an affordable device and approach for developing countries
口腔病变的反射共焦显微镜-光学相干断层扫描 (RCM-OCT) 成像:为发展中国家提供负担得起的设备和方法
  • 批准号:
    10735695
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
Neonatal Optical Coherence Tomography Angiography to Assess the Effects of Postnatal Exposures on Retinal Development and Predict Neurodevelopmental Outcomes
新生儿光学相干断层扫描血管造影评估产后暴露对视网膜发育的影响并预测神经发育结果
  • 批准号:
    10588086
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
Objective quantification of vitreous inflammation using optical coherence tomography
使用光学相干断层扫描客观量化玻璃体炎症
  • 批准号:
    10574348
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
Development of beam-offset optical coherence tomography
光束偏移光学相干断层扫描技术的发展
  • 批准号:
    10666910
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
Illuminating Glial Dysfunction in Alzheimer’s Disease with Optical Coherence Tomography
利用光学相干断层扫描揭示阿尔茨海默病中的神经胶质功能障碍
  • 批准号:
    10571184
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
Elucidation of normal findings of the choroid in optical coherence tomography images
阐明光学相干断层扫描图像中脉络膜的正常结果
  • 批准号:
    23K19669
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
CAREER: Quantum Coherence, Optical Readout, and Quantum Transduction for Spin Qubits from First-Principles Calculations
职业:基于第一原理计算的自旋量子位的量子相干性、光学读出和量子传导
  • 批准号:
    2342876
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Developing an Optical Coherence Tomography (OCT) based handheld intraoral scanner for dentistry
开发基于光学相干断层扫描 (OCT) 的牙科手持式口内扫描仪
  • 批准号:
    10759333
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
Assistive Robotically Aligning Optical Coherence Tomography and Laser Photocoagulation Therapy of the Retinal Periphery
辅助机器人对准视网膜周边光学相干断层扫描和激光光凝治疗
  • 批准号:
    10590252
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了