Conduction and Mechanical Properties of Single-Ion Conducting Ionomers

单离子导电离聚物的导电和机械性能

基本信息

  • 批准号:
    1404586
  • 负责人:
  • 金额:
    $ 57.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY: Ionomers based on polar monomers are an important class of energy materials for applications that require single-ion conduction. In this research, three novel types of materials are being made: (1) High molecular weight Reversible Addition-Fragmentation chain Transfer (RAFT) ionomers that are random copolymers of an anionic monomer and a polar solvating monomer, (2) RAFT diblock copolymers with one ionomeric random copolymer conducting block and one structural block and (3) polar low-Tg (glass transition temperature) non-volatile plasticizers. By fully understanding the dielectric and viscoelastic response of the RAFT copolymer ionomers, the optimal compositions for conduction of Li counterions will be identified and then RAFT diblock copolymers will be prepared with identical composition of the soft block. In this way, the effects of confinement to lamellar or cylinder phases can be identified, using also X-ray scattering to detail morphology. The linear viscoelastic response of these polymers will be understood using simple extensions of Rouse and reptation models to include the effects of ion association lifetimes. Polar low-Tg non-volatile plasticizers will be added to those materials to boost ion conductivity and dielectric constant of the soft domains, while lowering Tg. Thus far, siloxane oligomers with polar solvating side chains seem best, owing to their very low T (between -80 C and -60 C). By exploring the parameter space of ion content, polarity and specific solvation ability of both the comonomer and the plasticizer, the goal is to guide future materials design in the energy materials arena. For the diblock copolymers the modulus near room temperature is also crucial and the effects of these parameter variations on modulus will be measured to understand the tradeoff between ion conduction and mechanical properties, and their link to morphology and the amount of plasticizer in each microphase.NON-TECHNICAL SUMMARY: Applications that will be enabled by new materials in the energy arena simultaneously require high conductivity of one (and only one) type of ion and good mechanical strength. This research on ion conduction and mechanical properties of polymeric energy materials aims to understand the structure-property relations in polymers that conduct only one type of ion, such as lithium for advanced batteries. One strong advantage of developing materials for lithium ion transport that only conduct lithium (single-ion conductors as opposed to the lithium salts used in batteries today that also must conduct a negatively charged ion) is that both battery charging and access to the power of the battery could be as much as 100 times faster. If successful, the fundamental knowledge generated from this research will result in the understanding needed to design polymeric materials for a variety of specific energy applications, including advanced batteries, fuel cells, solar cells, ionic actuators, supercapacitors and energy harvesting devices; each of which require ion transport and mechanical strength. These applications offer societal benefits that may improve the lives of humans across the globe. Additionally, the project will involve education and training of graduate and undergraduate students.
技术概述:基于极性单体的离聚体是一类重要的能源材料,用于需要单离子传导的应用。在这项研究中,三种新型材料正在被制造出来:(1)高分子量可逆加成-破碎链转移(RAFT)离聚体,它是阴离子单体和极性溶剂化单体的无规共聚物;(2)具有一个离子无规共聚物导电块和一个结构块的RAFT二嵌段共聚物;(3)极性低tg(玻璃化转变温度)非挥发性增塑剂。通过充分了解RAFT共聚物离聚体的介电和粘弹性响应,确定Li反离子导电的最佳组成,然后用相同的软嵌段组成制备RAFT二嵌段共聚物。通过这种方式,可以利用x射线散射来确定层状或圆柱体相的限制效应。这些聚合物的线性粘弹性响应将使用劳斯和重复模型的简单扩展来理解,以包括离子结合寿命的影响。在这些材料中加入极性低Tg非挥发性增塑剂,以提高软畴的离子电导率和介电常数,同时降低Tg。到目前为止,具有极性溶剂化侧链的硅氧烷低聚物似乎是最好的,因为它们的温度很低(在-80℃到-60℃之间)。通过探索共聚物和增塑剂的离子含量、极性和比溶剂化能力的参数空间,目的是指导未来能源材料领域的材料设计。对于双嵌段共聚物,室温附近的模量也是至关重要的,这些参数变化对模量的影响将被测量,以了解离子传导和机械性能之间的权衡,以及它们与每个微相中形态和增塑剂量的联系。非技术总结:新材料在能源领域的应用同时需要一种(且只有一种)离子的高导电性和良好的机械强度。这项关于聚合物能量材料的离子传导和机械性能的研究旨在了解仅传导一种离子的聚合物的结构-性能关系,例如用于先进电池的锂。开发只导电锂离子的锂离子传输材料(单离子导体,而不是今天电池中使用的锂盐,也必须导电负电荷离子)的一个强大优势是,电池充电和获取电池电力的速度都可以快100倍。如果成功,从这项研究中产生的基础知识将导致设计各种特定能源应用所需的聚合物材料的理解,包括先进的电池,燃料电池,太阳能电池,离子致动器,超级电容器和能量收集装置;每一种都需要离子传输和机械强度。这些应用提供的社会效益可能会改善全球人类的生活。此外,该项目将涉及研究生和本科生的教育和培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ralph Colby其他文献

Ralph Colby的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ralph Colby', 18)}}的其他基金

Collaborative Research: Robust General Methods for Determination of Polyelectrolyte Molecular Weight and Polydispersity
合作研究:测定聚电解质分子量和多分散性的稳健通用方法
  • 批准号:
    2203746
  • 财政年份:
    2022
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Standard Grant
Fundamental Studies of Flow-Induced Polymer Crystallization
流动诱导聚合物结晶的基础研究
  • 批准号:
    2218775
  • 财政年份:
    2022
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Fundamental Basis for General Molecular Weight Determination for Ionic Polymers
合作研究:离子聚合物通用分子量测定的基础
  • 批准号:
    1904852
  • 财政年份:
    2019
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Standard Grant
Energy materials based on single-ion conducting polymers mixed with zwitterions
基于与两性离子混合的单离子导电聚合物的能源材料
  • 批准号:
    1807934
  • 财政年份:
    2018
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Standard Grant
SusChEM: Rheology of Cellulose and other Biopolymers in Ionic Liquids
SusChEM:离子液体中纤维素和其他生物聚合物的流变学
  • 批准号:
    1506589
  • 财政年份:
    2015
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Standard Grant
Collaborative: Viscoelasticity of Nanoparticle Dispersed Polymer Melts: Experiment and Simulation
协作:纳米颗粒分散聚合物熔体的粘弹性:实验与模拟
  • 批准号:
    1006659
  • 财政年份:
    2010
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Continuing Grant
Controlling Rheology by Tuning Colloidal Interactions
通过调节胶体相互作用来控制流变
  • 批准号:
    1033851
  • 财政年份:
    2010
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Standard Grant
First Principles Design of Ionomers for Facile Ion Transport
方便离子传输的离聚物的第一原理设计
  • 批准号:
    0933391
  • 财政年份:
    2009
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Standard Grant
Colloidal Polymer Chains: Construction, Statics and Dynamics
胶体聚合物链:结构、静力学和动力学
  • 批准号:
    0730780
  • 财政年份:
    2007
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Continuing Grant
Collaborative: The Polyelectrolyte-Ionomer Transition in Polymers
合作:聚合物中的聚电解质-离聚物转变
  • 批准号:
    0705745
  • 财政年份:
    2007
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Continuing Grant

相似海外基金

Exploring the contribution of cell wall components and osmotic pressure to mechanical properties that enable root growth
探索细胞壁成分和渗透压对促进根系生长的机械性能的贡献
  • 批准号:
    24K17868
  • 财政年份:
    2024
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Innovative Zn alloys with essential mechanical and biofunctional properties
具有基本机械和生物功能特性的创新锌合金
  • 批准号:
    DP240101131
  • 财政年份:
    2024
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Discovery Projects
Primary ferrite nucleation by Oxide+TiN to improve corrosion resistance and mechanical properties of duplex stainless steel weld
氧化物 TiN 初生铁素体形核提高双相不锈钢焊缝的耐腐蚀性和机械性能
  • 批准号:
    24K17531
  • 财政年份:
    2024
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Study for mechanical properties of carbon fiber-reinforced composite materials with phase-separated structures
相分离结构碳纤维增强复合材料力学性能研究
  • 批准号:
    23H01291
  • 财政年份:
    2023
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Detection of Emergent Mechanical Properties of Biologically Complex Cellular States
生物复杂细胞状态的紧急机械特性的检测
  • 批准号:
    10838854
  • 财政年份:
    2023
  • 资助金额:
    $ 57.2万
  • 项目类别:
DMREF/Collaborative Research: Iterative Design and Fabrication of Hyperuniform-Inspired Materials for Targeted Mechanical and Transport Properties
DMREF/合作研究:针对目标机械和传输性能的超均匀材料的迭代设计和制造
  • 批准号:
    2323342
  • 财政年份:
    2023
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Iterative Design and Fabrication of Hyperuniform-Inspired Materials for Targeted Mechanical and Transport Properties
DMREF/合作研究:针对目标机械和传输性能的超均匀材料的迭代设计和制造
  • 批准号:
    2323343
  • 财政年份:
    2023
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Active Learning-Based Material Discovery for 3D Printed Solids with Locally-Tunable Electrical and Mechanical Properties
DMREF/协作研究:基于主动学习的材料发现,用于具有局部可调电气和机械性能的 3D 打印固体
  • 批准号:
    2323696
  • 财政年份:
    2023
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Standard Grant
Effect of mechanical properties of roller pump tubing materials for extracorporeal circulation on blood damage
体外循环滚子泵管材力学性能对血液损伤的影响
  • 批准号:
    23K17249
  • 财政年份:
    2023
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
An integrated understanding of tectonics based on mechanical properties exploration of the island-arc crust
基于岛弧地壳力学性质探测的构造综合认识
  • 批准号:
    23H01270
  • 财政年份:
    2023
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了