DMREF/Collaborative Research: Active Learning-Based Material Discovery for 3D Printed Solids with Locally-Tunable Electrical and Mechanical Properties

DMREF/协作研究:基于主动学习的材料发现,用于具有局部可调电气和机械性能的 3D 打印固体

基本信息

  • 批准号:
    2323696
  • 负责人:
  • 金额:
    $ 43.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2027-07-31
  • 项目状态:
    未结题

项目摘要

This Designing Materials to Revolutionize and Engineer our Future (DMREF) project will establish a multi-disciplinary active learning method to discover new materials chemistries for additive manufacturing (AM; or 3D printing) wherein the electrical and mechanical properties can be locally controlled. This is a multi-disciplinary approach with an integration of advanced synthesis, characterization, simulation, and data science protocols. AM has seen exponential growth in recent years. One emerging area is to use AM for functional devices. However, the current AM techniques face challenges in fabricating these devices due to the lack of multi-material capability. Digital light processing (DLP) 3D printing is a rapidly developing AM technique due to its advantage of high speed and high resolution. The research will develop advanced data-driven approaches which utilize both experimental and computational training data to address the multiple design objectives and guide successive rounds of experiments. These approaches will be used to discover new resin formulations for DLP 3D printing where the local material properties can be controlled from soft to stiff and conductive to non-conductive. The active learning method will greatly expedite the development of new materials for AM. The research will have significant societal and economic impacts serving to maintain and enhance the US leadership position in AM. The research will be disseminated to undergraduate, graduate, and high school students and involve them in research. The research will involve students from underrepresented groups and promoting divergence, equity, and inclusion in the STEM field. Discovery of new polymers for AM has been hindered by the existence of a large number of ingredient monomers, large property differences among printed polymers, and the lack of an efficient approach to rapidly select these monomers at proper ratios to make polymers with properties that can meet the application needs. Preliminary work has demonstrated the feasibility to use an active learning approach to discover new resins with different monomer compositions for targeted mechanical properties. This work has shown that it is possible to use the copolymer ink design to print a monolithic part with locally variable mechanical properties and conductivity. The research will first establish a suite of high-throughput methods for polymer property evaluation by experiments and simulations. These include rapidly synthesizing polymers composed of different monomers at different ratios, characterizing their mechanical and electrical properties, and predicting these properties using molecular dynamics simulations with classical and machine learning based force fields trained on density functional theory calculation data. Assisted by these high-throughput methods, the research will establish an advanced multi-task active learning model that uses data from molecular dynamics simulations and from a limited number of experiments to predict polymer electrical and mechanical properties. A combined iterative approach between experiments and simulations will provide insight into effects of polymer composition and structure on polymer conductivity, mechanical properties, and property gradients. Finally, the active learning model will be used to guide the selection of monomers to design and fabricate 3D functional devices.This project is supported by the Division of Civil, Mechanical and Manufacturing Innovation (CMMI) of the Directorate for Engineering (ENG) and the Division of Materials Research (DMR) of the Directorate for Mathematical and Physical Sciences (MPS).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个设计材料以革新和工程我们的未来(DMREF)项目将建立一个多学科的主动学习方法,以发现用于增材制造(AM;或3D打印)的新材料化学,其中电气和机械性能可以在本地控制。这是一种多学科的方法,集成了先进的合成、表征、模拟和数据科学协议。AM近年来呈指数级增长。一个新兴领域是将增材制造用于功能性设备。然而,由于缺乏多材料能力,目前的增材制造技术在制造这些器件方面面临挑战。数字光处理(DLP) 3D打印以其高速、高分辨率的优点成为一种发展迅速的增材制造技术。该研究将开发先进的数据驱动方法,利用实验和计算训练数据来解决多个设计目标并指导连续几轮实验。这些方法将用于发现DLP 3D打印的新树脂配方,其中局部材料特性可以从软到硬、导电到不导电进行控制。主动学习的方法将大大加快AM新材料的开发。这项研究将产生重大的社会和经济影响,有助于保持和加强美国在AM领域的领导地位。该研究将分发给本科生、研究生和高中生,并让他们参与研究。这项研究将涉及来自代表性不足群体的学生,并促进STEM领域的分化、公平和包容。由于存在大量的成分单体,打印聚合物之间的性能差异很大,以及缺乏一种有效的方法来快速选择这些单体以适当的比例来制造具有满足应用需求的性能的聚合物,因此阻碍了增材制造新聚合物的发现。初步的工作已经证明了使用主动学习方法来发现具有不同单体组成的新树脂以达到目标机械性能的可行性。这项工作表明,可以使用共聚物油墨设计来打印具有局部可变机械性能和导电性的整体部件。该研究将首先通过实验和模拟建立一套高通量的聚合物性能评估方法。这些包括快速合成由不同比例的不同单体组成的聚合物,表征其机械和电气性能,并使用基于密度泛函理论计算数据训练的经典力场和基于机器学习的分子动力学模拟来预测这些性能。在这些高通量方法的帮助下,该研究将建立一个先进的多任务主动学习模型,该模型使用来自分子动力学模拟和有限数量实验的数据来预测聚合物的电学和力学性能。实验和模拟之间的结合迭代方法将提供深入了解聚合物组成和结构对聚合物电导率,机械性能和性能梯度的影响。最后,主动学习模型将用于指导单体的选择,以设计和制造3D功能器件。该项目由工程理事会(ENG)的土木、机械和制造创新司(CMMI)和数学和物理科学理事会(MPS)的材料研究司(DMR)支持。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anamika Prasad其他文献

Fundamental interactions between pectin and cellulose nanocrystals: a molecular dynamics simulation
  • DOI:
    10.1007/s10570-025-06611-x
  • 发表时间:
    2025-06-18
  • 期刊:
  • 影响因子:
    4.800
  • 作者:
    Xiawa Wu;Anamika Prasad
  • 通讯作者:
    Anamika Prasad
Green synthesis of neem extract and neem oil-based azadirachtin nanopesticides for fall Armyworm control and management
用于控制和管理秋季粘虫的基于印楝提取物和印楝油的印楝素纳米农药的绿色合成
  • DOI:
    10.1016/j.ecoenv.2025.118168
  • 发表时间:
    2025-04-15
  • 期刊:
  • 影响因子:
    6.100
  • 作者:
    Ivan Oyege;Alexi Switz;Lauren Oquendo;Anamika Prasad;Maruthi Sridhar Balaji Bhaskar
  • 通讯作者:
    Maruthi Sridhar Balaji Bhaskar
In cardiac muscle cells, both adrenergic agonists and antagonists induce reactive oxygen species from NOX2 but mutually attenuate each other's effects
  • DOI:
    10.1016/j.ejphar.2021.174350
  • 发表时间:
    2021-10-05
  • 期刊:
  • 影响因子:
  • 作者:
    Anamika Prasad;Amena Mahmood;Richa Gupta;Padmini Bisoyi;Nikhat Saleem;Sathyamangla V. Naga Prasad;Shyamal K. Goswami
  • 通讯作者:
    Shyamal K. Goswami
Biomechanical investigation of the effect of extracorporeal irradiation on resected human bone.
体外照射对切除人体骨影响的生物力学研究。
Functionalized quinolones and isoquinolones emvia/em 1,2-difunctionalization of arynes: synthesis of antagonist agent AS2717638 and floxacin key intermediates
功能化喹诺酮和异喹诺酮对芳烃的 1,2-双官能团化:拮抗剂 AS2717638 和氟喹诺酮关键中间体的合成
  • DOI:
    10.1039/d4cc05671j
  • 发表时间:
    2024-12-02
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Sachin D. Mahale;Anamika Prasad;Santosh B. Mhaske
  • 通讯作者:
    Santosh B. Mhaske

Anamika Prasad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anamika Prasad', 18)}}的其他基金

CAREER: Mechanics of Next-Generation Composites using Cellulose and Bioinspired Interfaces
职业:使用纤维素和仿生界面的下一代复合材料的力学
  • 批准号:
    2304788
  • 财政年份:
    2022
  • 资助金额:
    $ 43.24万
  • 项目类别:
    Standard Grant
CAREER: Mechanics of Next-Generation Composites using Cellulose and Bioinspired Interfaces
职业:使用纤维素和仿生界面的下一代复合材料的力学
  • 批准号:
    2046627
  • 财政年份:
    2021
  • 资助金额:
    $ 43.24万
  • 项目类别:
    Standard Grant

相似国自然基金

面向智能制造的多模态大语言模型驱动精密协作机械臂关键技术研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于多基站协作的6G通感算一体化多维资源管理技术研究
  • 批准号:
    QN25F010021
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
科技对口支援和东西部协作项目-海西州常见先天性心脏病筛查及超声介入治疗关键技术研究与应用推广
  • 批准号:
    2025C04026
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
科技对口支援和东西部协作项目-四川青稞高值化精深加工关键技术研究及产业化应用
  • 批准号:
    2025C04040
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
科技对口支援和东西部协作项目-AI赋能的魔芋保健食品开发与智能制造关键技术研究
  • 批准号:
    2025C04045
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
受限管状环境下分子通信协作机制研究 及微纳原型机开发
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
基于越疆CR3六轴协作机器人系统集成及应用实训平台研究与实践
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于多学科协作急性缺血性卒中院前延误干预效果及作用机制研究
  • 批准号:
    GDHLYJYZ202408
  • 批准年份:
    2025
  • 资助金额:
    1.5 万元
  • 项目类别:
    省市级项目
新型换挂协作运输平台决策优化研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 43.24万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 43.24万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 43.24万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
  • 批准号:
    2325392
  • 财政年份:
    2023
  • 资助金额:
    $ 43.24万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 43.24万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 43.24万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323715
  • 财政年份:
    2023
  • 资助金额:
    $ 43.24万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2323667
  • 财政年份:
    2023
  • 资助金额:
    $ 43.24万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
  • 批准号:
    2323719
  • 财政年份:
    2023
  • 资助金额:
    $ 43.24万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 43.24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了