Stochastic Controls, Portfolios, and Competing Particle Systems

随机控制、组合和竞争粒子系统

基本信息

  • 批准号:
    1405210
  • 负责人:
  • 金额:
    $ 59.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

In recent years good progress has been made in identifying instances of simple, descriptive conditions on observable characteristics of large equity markets, under which it is possible to outperform the market using simple portfolios based solely on observables. Nevertheless, a satisfactory general theory has not emerged yet: Is there a "canonical" way to understand the existing examples? Are they special cases of a much more general construction? Under what conditions is such arbitrage possible over arbitrary time horizons, and what is the "best possible" such arbitrage under specific market structures? The investigator and his collaborators study these issues and their connections to stochastic analysis and partial differential equations. They also study stable competing particle systems, that is, multidimensional diffusions interacting through their ranks in a manner giving rise to invariant measures that are in broad agreement with stability properties observed in large equity markets over decades. The stochastic analysis of such systems presents interesting challenges, such as the solvability of the stochastic equations that implement such diffusions; the study of multiple collisions, of their associated collision local times, of their invariant distributions, of time reversal; and the estimation of parameters in the resulting models for practical implementation. Furthermore, they work on stochastic optimization problems of the control and stopping type in the presence of unobservable parameters, modeled in a Bayesian framework by means of random variables with known prior distributions and continuous updating. This work has implications for the adaptive sequential detection of change-points, for signal processing, for finance, and for other fields of application where learning about unknown parameters, and dynamic system optimization, have to take place simultaneously and in real time. The investigator studies problems in stochastic controls, portfolios, and competing particle systems. These include: + The study of relative arbitrage in stochastic portfolio theory -- where one seeks simple, descriptive conditions that allow for arbitrage relative to a large equity market, and then tries to describe the nature of the most efficient such arbitrage; + The related study of the distribution of the time-to-explosion for diffusion processes; + The study of stochastic differential equations with "singular" (generalized) drift, determined by local time; + Problems of stochastic control or stopping under partial observations ("adaptive control"); and + The study of (rank-based) systems of competing Brownian particles, whose dynamics at any given time depend on the empirical measure of their configuration.
近年来,在确定大型股票市场的可观察特征的简单描述性条件方面取得了良好进展,在这种情况下,使用仅基于可观察特征的简单投资组合可以超越市场。 然而,一个令人满意的一般理论还没有出现:有没有一个“规范”的方式来理解现有的例子? 它们是一个更普遍的结构的特例吗? 在什么条件下,这种套利在任意的时间范围内是可能的,什么是“最好的可能”,这种套利在特定的市场结构? 调查员和他的合作者研究这些问题及其与随机分析和偏微分方程的联系。 他们还研究了稳定的竞争粒子系统,即多维扩散通过它们的行列相互作用的方式产生不变的措施,在广泛的协议与稳定性在大型股票市场观察了几十年。 这样的系统的随机分析提出了有趣的挑战,如可解性的随机方程,实现这种扩散;多个碰撞的研究,其相关的碰撞当地时间,其不变的分布,时间反转;和估计的参数在实际执行的模型。 此外,他们的工作在控制和停止类型的随机优化问题中存在不可观测的参数,在贝叶斯框架中建模的随机变量与已知的先验分布和连续更新。 这项工作具有影响的自适应顺序检测的变化点,信号处理,金融,和其他领域的应用,学习未知参数,动态系统优化,必须同时发生,并在真实的时间。研究者研究随机控制、投资组合和竞争粒子系统中的问题。 其中包括:+随机投资组合理论中的相对套利研究--人们寻找简单的描述性条件,允许相对于大型股票市场进行套利,然后试图描述最有效的套利性质; +扩散过程爆炸时间分布的相关研究;带“奇异”随机微分方程的研究(广义)漂移,由当地时间决定; +随机控制或部分观测下的停止问题(“自适应控制”);和+研究(基于秩)系统的竞争布朗粒子,其动态在任何给定的时间取决于经验措施,他们的配置。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ioannis Karatzas其他文献

The implied liquidity premium for equities
  • DOI:
    10.1007/s10436-005-0026-7
  • 发表时间:
    2005-11-18
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Robert Fernholz;Ioannis Karatzas
  • 通讯作者:
    Ioannis Karatzas
Invariant measure of gaps in degenerate competing three-particle systems
简并竞争三粒子系统中间隙的不变测量
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Franceschi;Tomoyuki Ichiba;Ioannis Karatzas;K. Raschel
  • 通讯作者:
    K. Raschel
Diversity and relative arbitrage in equity markets
  • DOI:
    10.1007/s00780-004-0129-4
  • 发表时间:
    2005-01-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Robert Fernholz;Ioannis Karatzas;Constantinos Kardaras
  • 通讯作者:
    Constantinos Kardaras
Control with Partial Observations and an Explicit Solution of Mortensen’s Equation
  • DOI:
    10.1007/s00245-003-0788-0
  • 发表时间:
    2004-02-26
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Václav E. Benes;Ioannis Karatzas;Daniel Ocone;Hui Wang
  • 通讯作者:
    Hui Wang

Ioannis Karatzas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ioannis Karatzas', 18)}}的其他基金

Stochastic Portfolios, Controls, and Interacting Particles
随机投资组合、控制和相互作用粒子
  • 批准号:
    2004997
  • 财政年份:
    2020
  • 资助金额:
    $ 59.03万
  • 项目类别:
    Continuing Grant
Stochastic Controls, Games and Portfolios
随机控制、游戏和投资组合
  • 批准号:
    0905754
  • 财政年份:
    2009
  • 资助金额:
    $ 59.03万
  • 项目类别:
    Continuing Grant
Topics in Stochastic Analysis and Optimization
随机分析和优化主题
  • 批准号:
    0601774
  • 财政年份:
    2006
  • 资助金额:
    $ 59.03万
  • 项目类别:
    Standard Grant
Stochastic Control with Discretionary Stopping
具有任意停止的随机控制
  • 批准号:
    0099690
  • 财政年份:
    2001
  • 资助金额:
    $ 59.03万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Stochastic Analysis & Modeling in Financial Mathematics
数学科学:随机分析
  • 批准号:
    9732810
  • 财政年份:
    1998
  • 资助金额:
    $ 59.03万
  • 项目类别:
    Continuing Grant
University - Industry Cooperative Research Programs in the Mathematical Sciences: Columbia University-Morgan Stanley Post-Doctoral Research Fellowship
数学科学领域的产学合作研究项目:哥伦比亚大学-摩根士丹利博士后研究奖学金
  • 批准号:
    9704505
  • 财政年份:
    1997
  • 资助金额:
    $ 59.03万
  • 项目类别:
    Standard Grant
Stochastic Control Problems in Mathematical Finance
数学金融中的随机控制问题
  • 批准号:
    9319816
  • 财政年份:
    1994
  • 资助金额:
    $ 59.03万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Stochastic Analysis and Optimization in Mathematical Economics
数学科学:数理经济学中的随机分析与优化
  • 批准号:
    9022188
  • 财政年份:
    1991
  • 资助金额:
    $ 59.03万
  • 项目类别:
    Continuing Grant
US-France (INRIA) Collaborative Research in Stochastic Control
美法 (INRIA) 随机控制合作研究
  • 批准号:
    8906965
  • 财政年份:
    1989
  • 资助金额:
    $ 59.03万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Stochastic Control and Applications in Mathematical Economics
数学科学:随机控制及其在数理经济学中的应用
  • 批准号:
    8723078
  • 财政年份:
    1988
  • 资助金额:
    $ 59.03万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
  • 批准号:
    2318940
  • 财政年份:
    2024
  • 资助金额:
    $ 59.03万
  • 项目类别:
    Standard Grant
CAREER: Understanding how hierarchical organization of growth plate stem cells controls skeletal growth
职业:了解生长板干细胞的分层组织如何控制骨骼生长
  • 批准号:
    2339761
  • 财政年份:
    2024
  • 资助金额:
    $ 59.03万
  • 项目类别:
    Continuing Grant
HYDROTHERMAL CONTROLS ON CALDERA EXPLOSIVITY
火山口爆炸的热液控制
  • 批准号:
    NE/X01519X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.03万
  • 项目类别:
    Research Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
  • 批准号:
    2342936
  • 财政年份:
    2024
  • 资助金额:
    $ 59.03万
  • 项目类别:
    Continuing Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
  • 批准号:
    2342937
  • 财政年份:
    2024
  • 资助金额:
    $ 59.03万
  • 项目类别:
    Continuing Grant
BioFacts - Biomineral Factories: a platform for the discovery and engineering of biomineralization controls
BioFacts - 生物矿物工厂:生物矿化控制发现和工程设计的平台
  • 批准号:
    EP/Y026446/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.03万
  • 项目类别:
    Research Grant
Collaborative Research: MRA: Resolving and scaling litter decomposition controls from leaf to landscape in North American drylands
合作研究:MRA:解决和扩展北美旱地从树叶到景观的垃圾分解控制
  • 批准号:
    2307195
  • 财政年份:
    2024
  • 资助金额:
    $ 59.03万
  • 项目类别:
    Continuing Grant
Controls on ridgeline profile morphology
山脊线轮廓形态的控制
  • 批准号:
    2344250
  • 财政年份:
    2024
  • 资助金额:
    $ 59.03万
  • 项目类别:
    Standard Grant
Quantification of the Impact of Hydrologic Controls on Anomalous Solute Transport and Mixing Dynamics in Partially Saturated Porous Media
水文控制对部分饱和多孔介质中异常溶质输运和混合动力学影响的量化
  • 批准号:
    2329250
  • 财政年份:
    2024
  • 资助金额:
    $ 59.03万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: EAR-PF: Feedbacks Between Controls of Stream Dry-Down Responses at the Rain-Snow Transition
博士后奖学金:EAR-PF:雨雪转变时河流干涸响应控制之间的反馈
  • 批准号:
    2305601
  • 财政年份:
    2024
  • 资助金额:
    $ 59.03万
  • 项目类别:
    Fellowship Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了