Stochastic Control Problems in Mathematical Finance
数学金融中的随机控制问题
基本信息
- 批准号:9319816
- 负责人:
- 金额:$ 13.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-07-01 至 1998-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9319816 Karatzas This project will focus on various mathematical problems arising in continuous-time finance that require the development of new techniques in stochastic control theory. These include (1) questions of optimization, hedging, and valuation of contingent claims in incomplete markets and/or under constraints; and (2) questions of economic equilibrium in incomplete or "effectively complete" markets. With regard to (1), it is expected that the problem of portfolio optimization with random endowment streams will require non-standard techniques from functional and convex analysis. Questions of pricing are formulated in terms of a new kind of stochastic control problem where the terminal reward function has a random component. Issues related to (2) include the establishment of the martingale property for certain exponential local martingales, and the representation property of a given set of martingales as stochastic integrals with respect to a second, given set. Existing methods for pricing financial instruments (for example, contracts whose value will be revealed at some future date) assume that financial markets are "complete" of "perfect" in the sense that it is possible to exactly calculate the present value, and hence the price, of such instruments. In reality, this is not the case; markets are "imperfect" or "incomplete" due, among other things, to investment constraints, transaction costs, different interest rates, different patterns of information, etc. Thus, it is very important to develop new methods for pricing financial instruments in imperfect markets; such methodologies will be investigated in this project. In a similar vein, standard economic equilibrium theory provides ways to determine prices for financial assets so that individual agents' utilities are maximized and "markets clear" (that is, supply equals demand) - but again, only in the context of perfect markets. This project will develop an equilibrium theory which is more g eneral and at the same time also more applicable by being able to deal with imperfect markets.
小行星9319816 这个项目将集中在连续时间金融中出现的各种数学问题,这些问题需要在随机控制理论中发展新技术。这些问题包括:(1)不完全市场和/或约束条件下的或有权益的优化、套期保值和估值问题;(2)不完全或“有效完全”市场中的经济均衡问题。关于(1),可以预期的是,具有随机捐赠流的投资组合优化问题将需要来自泛函和凸分析的非标准技术。定价的问题制定了一种新的随机控制问题的终端奖励函数具有随机分量。与(2)有关的问题包括建立某些指数局部鞅的鞅性质,以及给定鞅集作为关于第二个给定集的随机积分的表示性质。 现有的金融工具定价方法(例如,其价值将在未来某个日期显示的合同)假设金融市场是“完全”或“完美”的,即有可能准确计算出这些工具的现值,从而计算出价格。实际上,情况并非如此;市场是“不完美”或“不完整”的,原因之一是投资限制、交易成本、不同的利率、不同的信息模式等。因此,开发在不完美市场中为金融工具定价的新方法非常重要;本项目将研究这种方法。同样,标准的经济均衡理论提供了确定金融资产价格的方法,以使个体代理人的效用最大化,并使“市场出清”(即供给等于需求)--但同样,这也仅限于完美市场的背景下。这个项目将发展一个均衡理论,这是更一般的,同时也更适用于能够处理不完美的市场。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ioannis Karatzas其他文献
The implied liquidity premium for equities
- DOI:
10.1007/s10436-005-0026-7 - 发表时间:
2005-11-18 - 期刊:
- 影响因子:0.700
- 作者:
Robert Fernholz;Ioannis Karatzas - 通讯作者:
Ioannis Karatzas
Invariant measure of gaps in degenerate competing three-particle systems
简并竞争三粒子系统中间隙的不变测量
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
S. Franceschi;Tomoyuki Ichiba;Ioannis Karatzas;K. Raschel - 通讯作者:
K. Raschel
Diversity and relative arbitrage in equity markets
- DOI:
10.1007/s00780-004-0129-4 - 发表时间:
2005-01-01 - 期刊:
- 影响因子:1.400
- 作者:
Robert Fernholz;Ioannis Karatzas;Constantinos Kardaras - 通讯作者:
Constantinos Kardaras
Control with Partial Observations and an Explicit Solution of Mortensen’s Equation
- DOI:
10.1007/s00245-003-0788-0 - 发表时间:
2004-02-26 - 期刊:
- 影响因子:1.700
- 作者:
Václav E. Benes;Ioannis Karatzas;Daniel Ocone;Hui Wang - 通讯作者:
Hui Wang
Ioannis Karatzas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ioannis Karatzas', 18)}}的其他基金
Stochastic Portfolios, Controls, and Interacting Particles
随机投资组合、控制和相互作用粒子
- 批准号:
2004997 - 财政年份:2020
- 资助金额:
$ 13.9万 - 项目类别:
Continuing Grant
Stochastic Controls, Portfolios, and Competing Particle Systems
随机控制、组合和竞争粒子系统
- 批准号:
1405210 - 财政年份:2014
- 资助金额:
$ 13.9万 - 项目类别:
Continuing Grant
Stochastic Controls, Games and Portfolios
随机控制、游戏和投资组合
- 批准号:
0905754 - 财政年份:2009
- 资助金额:
$ 13.9万 - 项目类别:
Continuing Grant
Topics in Stochastic Analysis and Optimization
随机分析和优化主题
- 批准号:
0601774 - 财政年份:2006
- 资助金额:
$ 13.9万 - 项目类别:
Standard Grant
Stochastic Control with Discretionary Stopping
具有任意停止的随机控制
- 批准号:
0099690 - 财政年份:2001
- 资助金额:
$ 13.9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Stochastic Analysis & Modeling in Financial Mathematics
数学科学:随机分析
- 批准号:
9732810 - 财政年份:1998
- 资助金额:
$ 13.9万 - 项目类别:
Continuing Grant
University - Industry Cooperative Research Programs in the Mathematical Sciences: Columbia University-Morgan Stanley Post-Doctoral Research Fellowship
数学科学领域的产学合作研究项目:哥伦比亚大学-摩根士丹利博士后研究奖学金
- 批准号:
9704505 - 财政年份:1997
- 资助金额:
$ 13.9万 - 项目类别:
Standard Grant
Mathematical Sciences: Stochastic Analysis and Optimization in Mathematical Economics
数学科学:数理经济学中的随机分析与优化
- 批准号:
9022188 - 财政年份:1991
- 资助金额:
$ 13.9万 - 项目类别:
Continuing Grant
US-France (INRIA) Collaborative Research in Stochastic Control
美法 (INRIA) 随机控制合作研究
- 批准号:
8906965 - 财政年份:1989
- 资助金额:
$ 13.9万 - 项目类别:
Standard Grant
Mathematical Sciences: Stochastic Control and Applications in Mathematical Economics
数学科学:随机控制及其在数理经济学中的应用
- 批准号:
8723078 - 财政年份:1988
- 资助金额:
$ 13.9万 - 项目类别:
Continuing Grant
相似国自然基金
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
相似海外基金
Stochastic optimal control problems in risk management
风险管理中的随机最优控制问题
- 批准号:
RGPIN-2020-04338 - 财政年份:2022
- 资助金额:
$ 13.9万 - 项目类别:
Discovery Grants Program - Individual
Research on Applications of Advanced Stochastic Control and Game Theory to Trade Execution Problems in Financial Markets
高级随机控制和博弈论在金融市场交易执行问题中的应用研究
- 批准号:
22K01573 - 财政年份:2022
- 资助金额:
$ 13.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stochastic Volterra integral equations and related control problems
随机 Volterra 积分方程及相关控制问题
- 批准号:
22K13958 - 财政年份:2022
- 资助金额:
$ 13.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Time-inconsistent stochastic control problems and related topics
时间不一致随机控制问题及相关主题
- 批准号:
21J00460 - 财政年份:2021
- 资助金额:
$ 13.9万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Stochastic optimal control problems in risk management
风险管理中的随机最优控制问题
- 批准号:
RGPIN-2020-04338 - 财政年份:2021
- 资助金额:
$ 13.9万 - 项目类别:
Discovery Grants Program - Individual
Stochastic optimal control problems in risk management
风险管理中的随机最优控制问题
- 批准号:
RGPIN-2020-04338 - 财政年份:2020
- 资助金额:
$ 13.9万 - 项目类别:
Discovery Grants Program - Individual
Time-Consistency Theory for Time-Inconsistent Stochastic Optimal Control Problems
时间不一致随机最优控制问题的时间一致性理论
- 批准号:
1812921 - 财政年份:2018
- 资助金额:
$ 13.9万 - 项目类别:
Standard Grant
Identification problems in stochastic control theory
随机控制理论中的辨识问题
- 批准号:
17K05359 - 财政年份:2017
- 资助金额:
$ 13.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Stochastic Approach to Environmental Investment Problems with the Planar Impulse Control(Fostering Joint International Research)
平面脉冲控制环境投资问题的随机方法(促进国际联合研究)
- 批准号:
16KK0046 - 财政年份:2017
- 资助金额:
$ 13.9万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research)
New Problems in Stochastic Control Motivated by Mathematical Finance
数学金融引发的随机控制新问题
- 批准号:
1613170 - 财政年份:2016
- 资助金额:
$ 13.9万 - 项目类别:
Standard Grant