Some Rigidity and Comparison Problems Involving the Scalar or Ricci Curvature

涉及标量或里奇曲率的一些刚性和比较问题

基本信息

  • 批准号:
    0905904
  • 负责人:
  • 金额:
    $ 12.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

One of the central themes in differential geometry is to understand curvature and its implications in terms of geometric and topological properties. This project is to study two classes of problems involving scalar curvature and Ricci curvature. The first class of problems concerns compact Riemannian manifolds with boundary whose scalar or Ricci curvature is positive. It is an important problem to understand the boundary effect of these curvature conditions. These problems are related to understanding quasi-local mass in general relativity. A key specific case is whether a compact 3-manifold with scalar curvature bigger or equal to six whose boundary is totally geodesic and isometric to the standard two dimensional sphere is isometric to the three dimensional hemisphere. These problems will also serve as great source of inspiration and lead to many other fascinating problems. Riemannian manifolds with nonnegative Ricci curvature have been studied a lot and we have a good knowledge about them. Riemannian manifolds with a negative lower bound for Ricci curvature are more complicated and less understood. The author intends to study them by working on some rigidity and comparison problems involving asymptotic invariants such as entropy and the spectrum of the Laplace operator. This project aims to study some fundamental problems involving scalar and Ricci curvature. Progress will deepen our understanding of curvature and geometry. These problems have interactions with other areas of mathematics including algebraic geometry, probability and potential theory. Some of these problems are closely related to theoretical physics, particularly general relativity and their solutions will enhance our understanding of spacetime. This project will also contribute to the training of graduate students and post-docs in the area of geometric analysis.
微分几何的中心主题之一是理解曲率及其在几何和拓扑性质方面的含义。本课题主要研究两类涉及数量曲率和Ricci曲率的问题。第一类问题是关于边界为正标量曲率或正Ricci曲率的紧致黎曼流形。理解这些曲率条件的边界效应是一个重要的问题。这些问题与理解广义相对论中的准定域质量有关。一个关键的特殊情况是一个标量曲率大于或等于6的紧致3-流形,其边界是全测地的,并且等距于标准的二维球面,是否等距于三维半球。这些问题也将成为灵感的巨大来源,并导致许多其他迷人的问题。具有非负Ricci曲率的黎曼流形已经被研究了很多,我们对它有了很好的了解。具有负的Ricci曲率下界的黎曼流形更复杂,也更不容易理解。作者打算研究他们的工作涉及的渐近不变量,如熵和频谱的拉普拉斯算子的一些刚性和比较问题。 本项目旨在研究涉及标量曲率和Ricci曲率的一些基本问题。进步将加深我们对曲率和几何的理解。这些问题与数学的其他领域,包括代数几何,概率和潜在的理论相互作用。其中一些问题与理论物理学密切相关,特别是广义相对论,它们的解决方案将增强我们对时空的理解。 该项目还将有助于培训几何分析领域的研究生和博士后。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaodong Wang其他文献

A label-free multifunctional nanosensor based on N-doped carbon nanodots for vitamin B12 and Co2+ detection, and bioimaging in living cells and zebrafisht
基于氮掺杂碳纳米点的无标记多功能纳米传感器,用于维生素 B12 和 Co2 检测以及活细胞和斑马鱼的生物成像
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Fangfang Du;Zhe Cheng;Marius Kremer;Yang Liu;Xiaodong Wang;Shaomin Shuang;Chuan Dong
  • 通讯作者:
    Chuan Dong
Dynamic response analysis for the aero-engine dual-rotor-bearing system with flexible coupling misalignment faults
航空发动机双转子轴承系统弹性联轴器不对中故障动态响应分析
  • DOI:
    10.21595/jve.2017.18553
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Zhenyong Lu;Xiaodong Wang;Lei Hou;Yushu Chen;Hongliang Li
  • 通讯作者:
    Hongliang Li
Polyimide/MXene hybrid aerogel-based phase-change composites for solar-driven seawater desalination
用于太阳能驱动海水淡化的聚酰亚胺/MXene混合气凝胶相变复合材料
  • DOI:
    10.1016/j.cej.2022.135862
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Zhiheng Zheng;Huan Liu;Dezhen Wu;Xiaodong Wang
  • 通讯作者:
    Xiaodong Wang
Preparation of molybdenum-doped akaganeite nano-rods and their catalytic effect on the viscosity reduction of extra heavy crude oil
钼掺杂赤铜矿纳米棒的制备及其对超稠油降粘的催化作用
  • DOI:
    10.1016/j.apsusc.2017.09.097
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Kai Zhao;Xiaodong Wang;Hui Pan;Qiuye Li;JianjunYang;Xiaohong Li;Zhijun Zhang
  • 通讯作者:
    Zhijun Zhang
Dose Delivery Estimated by Bremsstrahlung Imaging and Partition Model Correlated with Response Following Intra-arterial Radioembolization with 32P-Glass Microspheres for the Treatment of Hepatocellular Carcinoma
通过轫致辐射成像和分配模型估计的剂量输送与用 32P-玻璃微球治疗肝细胞癌的动脉内放射栓塞后的反应相关
  • DOI:
    10.1007/s11605-010-1180-4
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Xiaodong Wang;Ren;Xicai Cao;Jian Tan;Bin Li
  • 通讯作者:
    Bin Li

Xiaodong Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaodong Wang', 18)}}的其他基金

A RadBackCom Approach to Integrated Sensing and Communication: Waveform Design and Receiver Signal Processing
RadBackCom 集成传感和通信方法:波形设计和接收器信号处理
  • 批准号:
    2335765
  • 财政年份:
    2024
  • 资助金额:
    $ 12.33万
  • 项目类别:
    Standard Grant
New Route to Zero Carbon Hydrogen
零碳氢新途径
  • 批准号:
    EP/X018172/1
  • 财政年份:
    2023
  • 资助金额:
    $ 12.33万
  • 项目类别:
    Research Grant
Pushing Heterogeneous Catalysis into Biological Chemistry via Cofactor Regeneration
通过辅因子再生将多相催化推向生物化学
  • 批准号:
    EP/V048635/1
  • 财政年份:
    2021
  • 资助金额:
    $ 12.33万
  • 项目类别:
    Research Grant
Collaborative Research: Real-Time Data-Driven Anomaly Detection for Complex Networks
协作研究:复杂网络的实时数据驱动异常检测
  • 批准号:
    2040500
  • 财政年份:
    2021
  • 资助金额:
    $ 12.33万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: TensorNN: An Algorithm and Hardware Co-design Framework for On-device Deep Neural Network Learning using Low-rank Tensors
合作研究:SHF:Medium:TensorNN:使用低秩张量进行设备上深度神经网络学习的算法和硬件协同设计框架
  • 批准号:
    1954549
  • 财政年份:
    2020
  • 资助金额:
    $ 12.33万
  • 项目类别:
    Continuing Grant
CIF: Small: Massive MIMO for Massive Machine-Type Communication
CIF:小型:用于大规模机器类型通信的大规模 MIMO
  • 批准号:
    1814803
  • 财政年份:
    2018
  • 资助金额:
    $ 12.33万
  • 项目类别:
    Standard Grant
CIF: Small: Collaborative Research: Communications with Energy Harvesting Nodes
CIF:小型:协作研究:与能量收集节点的通信
  • 批准号:
    1526215
  • 财政年份:
    2015
  • 资助金额:
    $ 12.33万
  • 项目类别:
    Standard Grant
Advanced Signal Processing for Smard Grid and Renewable Energy Sources
适用于智能电网和可再生能源的高级信号处理
  • 批准号:
    1405327
  • 财政年份:
    2014
  • 资助金额:
    $ 12.33万
  • 项目类别:
    Standard Grant
CIF: Medium Projects: Event-Triggered Sampling: Application to Decentralized Detection and Estimation
CIF:中型项目:事件触发采样:在去中心化检测和估计中的应用
  • 批准号:
    1064575
  • 财政年份:
    2011
  • 资助金额:
    $ 12.33万
  • 项目类别:
    Continuing Grant
CDI Type II/Collaborative Research: A New Approach to the Modeling of Clot Formation and Lysis in Arteries
CDI II 型/合作研究:动脉血栓形成和溶解建模的新方法
  • 批准号:
    1028112
  • 财政年份:
    2010
  • 资助金额:
    $ 12.33万
  • 项目类别:
    Standard Grant

相似海外基金

Group Actions, Rigidity, and Invariant Measures
群体行动、刚性和不变措施
  • 批准号:
    2400191
  • 财政年份:
    2024
  • 资助金额:
    $ 12.33万
  • 项目类别:
    Standard Grant
Conference: Groups Actions and Rigidity: Around the Zimmer Program
会议:团体行动和刚性:围绕 Zimmer 计划
  • 批准号:
    2349566
  • 财政年份:
    2024
  • 资助金额:
    $ 12.33万
  • 项目类别:
    Standard Grant
CAREER: Rigidity in Mapping class groups and homeomorphism groups
职业:映射类群和同胚群中的刚性
  • 批准号:
    2339110
  • 财政年份:
    2024
  • 资助金额:
    $ 12.33万
  • 项目类别:
    Continuing Grant
THE ROLE OF MEDIUM SPINY NEURONS IN SLEEP DEPRIVATION-INDUCED COGNITIVE RIGIDITY.
中型棘神经元在睡眠剥夺引起的认知僵化中的作用。
  • 批准号:
    10656057
  • 财政年份:
    2023
  • 资助金额:
    $ 12.33万
  • 项目类别:
The geometry, rigidity and combinatorics of spaces and groups with non-positive curvature feature
具有非正曲率特征的空间和群的几何、刚度和组合
  • 批准号:
    2305411
  • 财政年份:
    2023
  • 资助金额:
    $ 12.33万
  • 项目类别:
    Standard Grant
Rigidity and boundary phenomena for geometric variational problems
几何变分问题的刚性和边界现象
  • 批准号:
    DE230100415
  • 财政年份:
    2023
  • 资助金额:
    $ 12.33万
  • 项目类别:
    Discovery Early Career Researcher Award
Pioneering arithmetic topology around cyclotomic units and application to profinite rigidity
围绕分圆单元的开创性算术拓扑及其在有限刚度上的应用
  • 批准号:
    23K12969
  • 财政年份:
    2023
  • 资助金额:
    $ 12.33万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Constraints, Rigidity, and Risk in Global Supply Chains
全球供应链的约束、刚性和风险
  • 批准号:
    2315629
  • 财政年份:
    2023
  • 资助金额:
    $ 12.33万
  • 项目类别:
    Standard Grant
Singularities and rigidity in geometric evolution equations
几何演化方程中的奇异性和刚性
  • 批准号:
    2304684
  • 财政年份:
    2023
  • 资助金额:
    $ 12.33万
  • 项目类别:
    Standard Grant
Harmonic Maps, Geometric Rigidity, and Non-Abelian Hodge Theory
调和映射、几何刚性和非阿贝尔霍奇理论
  • 批准号:
    2304697
  • 财政年份:
    2023
  • 资助金额:
    $ 12.33万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了