Collaborative Research: Integrated Graphene NEMS Switch ESD Protection for Low-Power ICs
合作研究:低功耗 IC 的集成石墨烯 NEMS 开关 ESD 保护
基本信息
- 批准号:1405558
- 负责人:
- 金额:$ 30.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ECCS Prop. No. 1405059Proposal Title: Collaborative Research: Graphene NEMS Switch ESD Protection Circuit for Energy-Efficient ICsAward GoalDeveloping graphene-based mechanical switches as a future reliability solution to electrostatic discharge failures to next-generation energy-efficient integrated circuitsNontechnical AbstractAside from the performance, reliability is the key concern to any integrated circuits (ICs) and systems. Electrostatic discharge (ESD) failure is regarded as one of the most significant reliability problems to ICs and electronic systems, which results in billions of dollars of revenue losses each year to the electronic industry. Essentially, no electronic systems, including smartphones, tablets, personal computers, television sets, wireless routers, implantable biomedical devices, etc., may survive the market without proper and robust ESD protection measures in place, because the inevitable ESD surges represent a live threat to any electronic products due to damages in real world. As microelectronics technologies continue advance as represented by the aggressive scaling down of its feature sizes and higher integration level, the decade-long traditional ESD protection solutions utilizing active electronic devices can no longer be acceptable because the inherent parasitic effects associated with any ESD protection devices will significantly degrade the performance of ICs and systems. For example, the leakage current associated with an ESD structure will become relatively too high for the next-generation energy-efficient electronic products. A completely new ESD protection concept is proposed and revolutionary graphene-based mechanical switch structures will be developed in this work as a potential ESD protection solution. Because of its mechanical nature, the graphene switches will provide adequate ESD protection to ICs without inherent leakage current, which shall enable next-generation energy-efficient ICs and systems that, in plain language, translates into lower power consumption, hence, longer battery time for an electronic product. If successful, the novel graphene switch ESD protection solution shall make immediate impacts to the humanity by helping to create a greener society.The UCR-UCLA collaboration will boost interdisciplinary research between Electrical Engineering and Materials Science beyond the campus boundaries. The academic-industrial collaboration plan will have great social impacts, including technical and economic benefits to the American Microelectronics industry. Integrated research-education activities are proposed to expose students to contemporary micro/nano-electronics reliability research and the Microelectronics industry, as well as to train technically and globally competent workforces for the America. Underrepresented minority students are encouraged to involve in related research activities.Technical AbstractElectrostatic Discharge (ESD) failure is becoming the most devastating reliability problem to integrated circuits (IC) and systems as IC technologies advance into nano scale, which requires on-chip ESD protection. Meanwhile, emerging nano technologies also requires adequate ESD protection to enable reliable real-world applications. For decades, traditional ESD protection relies on PN-junction-based structures, which no longer work for energy-efficient ICs and nano electronics. Particularly, ESD-induced leakage becomes increasingly intolerable to ultra-low-power and high-reliable ICs, such as energy-efficient ICs for green systems including mobile electronics and extremely-reliable implantable biomedical devices, etc. Graphene, with super electrical and thermal conductivity, as well as thin layer and mechanical strength, is ideal for making a new breed of ESD protection structures. The investigators at the University of California propose a revolutionary graphene NEMS (nano electromechanical system) switch ESD protection concept as a potential integrated design-for-reliability (DfR) solution for green ICs to address the emerging on-chip ESD protection challenges. This research will 1) develop Graphene super ESD line discharger for energy-efficient ICs, 2) develop Graphene NEMS switch ESD protection mechanism and structures for ultra-low-power ICs, 3) develop CMOS-compatible Graphene ESD protection structure fabrication process, and 4) develop Graphene-based ESD protection device models for IC design demonstration. The novelty is to take full use of graphene ballistic electrical and thermal transport properties, and super mechanical strength feature, to achieve zero-leakage, low-parasitic and robust ESD protection for next-generation energy-efficient ICs.
ECCS Prop. No. 1405059提案标题:合作研究:石墨烯NEMS开关ESD保护电路的节能IC Award Goal开发基于石墨烯的机械开关作为未来的可靠性解决方案,以解决下一代节能集成电路的静电放电故障非技术摘要除了性能,可靠性是任何集成电路(IC)和系统的关键问题。静电放电(ESD)故障被认为是集成电路和电子系统最重要的可靠性问题之一,每年给电子工业造成数十亿美元的收入损失。从本质上讲,没有电子系统,包括智能手机、平板电脑、个人电脑、电视机、无线路由器、植入式生物医学设备等,由于不可避免的ESD浪涌会对任何电子产品造成实际威胁,因此在没有适当和强大的ESD保护措施的情况下,电子产品可能会在市场上生存下来,因为在真实的世界中,ESD浪涌会对任何电子产品造成损坏。随着微电子技术的不断进步,其特征尺寸的急剧缩小和更高的集成度,使用有源电子器件的长达十年的传统ESD保护解决方案不再被接受,因为与任何ESD保护器件相关联的固有寄生效应将显著降低IC和系统的性能。例如,与ESD结构相关联的泄漏电流对于下一代节能电子产品将变得相对过高。提出了一种全新的ESD保护概念,并将在这项工作中开发革命性的石墨烯基机械开关结构作为潜在的ESD保护解决方案。由于其机械性质,石墨烯开关将为IC提供足够的ESD保护,而不会产生固有的泄漏电流,这将使下一代节能IC和系统成为可能,用通俗的语言来说,这意味着更低的功耗,因此电子产品的电池使用时间更长。如果成功,新型石墨烯开关ESD保护解决方案将通过帮助创建一个更绿色的社会而对人类产生直接影响。UCR-UCLA的合作将推动电气工程和材料科学之间的跨学科研究超越校园边界。这项产学合作计划将产生巨大的社会影响,包括对美国微电子产业的技术和经济效益。综合研究教育活动的建议,让学生接触到当代微/纳米电子可靠性研究和微电子行业,以及培训技术和全球有能力的劳动力为美国。随着集成电路技术向纳米级发展,静电放电(ESD)失效成为集成电路(IC)和系统最具破坏性的可靠性问题,这就需要在芯片上进行ESD保护。与此同时,新兴的纳米技术也需要足够的ESD保护,以实现可靠的实际应用。几十年来,传统的ESD保护依赖于基于PN结的结构,这种结构不再适用于节能IC和纳米电子产品。特别是,ESD引起的泄漏对于超低功耗和高可靠性IC变得越来越难以忍受,例如用于移动的电子和极可靠的可植入生物医学设备等的绿色系统的节能IC。石墨烯具有超强的导电性和导热性,以及薄层和机械强度,是制造新型ESD保护结构的理想选择。加州大学的研究人员提出了一种革命性的石墨烯NEMS(纳米机电系统)开关ESD保护概念,作为绿色IC的潜在集成可靠性设计(DfR)解决方案,以解决新兴的片上ESD保护挑战。本研究将1)开发用于节能IC的石墨烯超级ESD线路放电器,2)开发用于超低功耗IC的石墨烯NEMS开关ESD保护机制和结构,3)开发CMOS兼容的石墨烯ESD保护结构制造工艺,以及4)开发用于IC设计演示的石墨烯ESD保护器件模型。其新奇在于充分利用石墨烯的弹道电和热输运特性以及超强的机械强度特性,为下一代节能IC实现零泄漏、低寄生和鲁棒的ESD保护。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ya-Hong Xie其他文献
Activation and shutdown dose-rate analyses for the EAST NBI test facility
- DOI:
10.1007/s41365-016-0079-5 - 发表时间:
2016-07-08 - 期刊:
- 影响因子:3.800
- 作者:
Yu-Qing Chen;Ji Wang;Bin Wu;Jun Li;Ya-Hong Xie;Guo-Qiang Zhong;Chun-Dong Hu - 通讯作者:
Chun-Dong Hu
Development of a core snubber for the neutral beam injector on EAST
EAST 中性束注入器核心缓冲器的开发
- DOI:
10.1063/1.4972883 - 发表时间:
2016 - 期刊:
- 影响因子:1.6
- 作者:
Cai-Chao Jiang;Chun-Dong Hu;Ya-Hong Xie;Sheng Liu;Shi-Yong Chen;Zhi-Min Liu;Yong-Jian Xu;Li-Zhen Liang;Yuan-Lai Xie - 通讯作者:
Yuan-Lai Xie
Hybrid System Combining Two-Dimensional Materials and Ferroelectrics and Its Application in Photodetection
- DOI:
10.1021/acsnano.1c01735 - 发表时间:
2021 - 期刊:
- 影响因子:17.1
- 作者:
Yanxiao Sun;Gang Niu;Wei Ren;Xiangju Meng;Jinyan Zhao;Wenbo Luo;Zuo-Guang Ye;Ya-Hong Xie - 通讯作者:
Ya-Hong Xie
Non-polar true-lateral GaN power diodes on foreign substrates
异质衬底上的非极性真横向 GaN 功率二极管
- DOI:
10.1063/5.0051552 - 发表时间:
2021-05 - 期刊:
- 影响因子:4
- 作者:
Jia Wang;Guo Yu;Hua Zong;Yaqiang Liao;Weifang Lu;Wentao Cai;Xiaodong Hu;Ya-Hong Xie;Hiroshi Amano - 通讯作者:
Hiroshi Amano
The Development of Power Supply for Negative Ion Source Extraction Grid
负离子源提取栅电源的研制
- DOI:
10.1109/tps.2018.2797891 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Chun-Dong Hu;Mei-Chu Huang;Cai-Chao Jiang;Ya-Hong Xie;Jiang-Long Wei;Li-Zhen Liang;Yuan-Zhe Zhao;Shi-Yong Chen;Yuan-Lai Xie - 通讯作者:
Yuan-Lai Xie
Ya-Hong Xie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ya-Hong Xie', 18)}}的其他基金
Mixed Signal Electronic Technologies: Joint Initiative Between NSF and SRC : Three-Dimensional Impedance Engineering of Substrates for Mixed Signal Integrated Circuit Applications
混合信号电子技术:NSF 和 SRC 之间的联合倡议:混合信号集成电路应用基板的三维阻抗工程
- 批准号:
0120368 - 财政年份:2001
- 资助金额:
$ 30.16万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 30.16万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
$ 30.16万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 30.16万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 30.16万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331295 - 财政年份:2024
- 资助金额:
$ 30.16万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
- 批准号:
2332661 - 财政年份:2024
- 资助金额:
$ 30.16万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326622 - 财政年份:2024
- 资助金额:
$ 30.16万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331296 - 财政年份:2024
- 资助金额:
$ 30.16万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
- 批准号:
2332662 - 财政年份:2024
- 资助金额:
$ 30.16万 - 项目类别:
Standard Grant
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
- 批准号:
2346650 - 财政年份:2024
- 资助金额:
$ 30.16万 - 项目类别:
Standard Grant














{{item.name}}会员




