Semiflows with arbitrary acting topological semigroups

具有任意作用拓扑半群的半流

基本信息

项目摘要

The project is in the area of Topological Dynamical Systems. A dynamical system is a mathematical model of a physical system. There is a huge variety of real life situations that can be considered as dynamical systems in one way or another. Dynamical systems have three components: (a) the phase space, whose points represent all possible physical states of the physical system; (b) the time, which, roughly speaking, can be discrete; continuous; or combined; one-dimensional or having any finite (or even infinite) number of dimensions; etc; (c) the set of physical rules according to which the system that is currently at some state assumes at any given moment another state. In the classical theory of Topological Dynamical Systems the time is represented by the group of real numbers (continuous time) or by the group of whole numbers (discrete time). The group in question is then said to be the acting group and the dynamical system is called a flow. The PI is developing the related theory of semiflows involving semigroups of nonnegative whole numbers. Obtaining unifying statements for various kinds of acting semiflows will advance the area of topological dynamics and have applications to other areas of analysis and topology. It is also important for some areas of mathematical biology and mathematical physics.The goal of this project is to advance the development of a theory of general semiflows. The universal enveloping semigroup of the acting semigroup T (topologically that is the Stone-Cech compactification Beta T of the topological space T) is an important object that is used to capture asymptotics and recurrence of the trajectories of the semiflow. The algebraic structure of Beta T plays a crucial role. The principal investigator plans on giving a detailed construction of Beta T in terms of maximal completely regular ultrafilters on T (assuming that T is a completely regular space), including the definition of an operation on Beta T, and then analyze in detail its algebraic structure using this explicit description. The principal investigator expects that for general semiflows conditions like "Beta T minus T is a semigroup", "Beta T minus T contains an invariant set", "Beta T minus T contains an idempotent", together with the notions of minimal and maximal idempotents and other algebraic notions, will be appearing in the statements about the dynamics of the semiflow. The principal investigator will study various notions of recurrence in general semiflows. They will be defined in terms of the largeness of the set of their return times to a given neighborhood (infinite, syndetic, replete, etc.) and then characterized in terms of properties of elements of Beta T that fix them. The principal investigator plans also to study the following notions: the proximal pairs of points, distal points, product-recurrent points and their relation with distal points, the structure of the Ellis semigroup (another important enveloping semigroup of the acting semigroup), IP sets, Ramsey type theorems and others. The Principal investigator will also work on generalizing sensitivity and chaos to the case of general semiflows.
该项目属于拓扑动力系统领域。动力系统是物理系统的数学模型。现实生活中有大量的情况可以以这样或那样的方式被视为动态系统。动力系统有三个组成部分:(a)相空间,其点表示物理系统的所有可能的物理状态;(b)时间,粗略地说,它可以是离散的;连续的;或结合;一维的:一维的或具有有限(甚至无限)维数的;等;(c)一组物理规则,根据这些规则,当前处于某种状态的系统在任何给定时刻都假定处于另一种状态。在经典的拓扑动力系统理论中,时间用实数群(连续时间)或整数群(离散时间)来表示。这个群体被称为行动群体,而动力系统被称为流。PI正在发展涉及非负整数半群的半流的相关理论。获得各种作用半流的统一表述将推动拓扑动力学领域的发展,并在其他分析和拓扑领域具有应用价值。它对数学生物学和数学物理学的某些领域也很重要。这个项目的目标是促进一般半流理论的发展。作用半群T的全称包络半群(拓扑学上是拓扑空间T的stone - ech紧化β T)是用来捕捉半流轨迹的渐近性和递推性的重要对象。T的代数结构起着至关重要的作用。主要研究者计划用T上的最大完全正则超滤波器(假设T是一个完全正则空间)给出Beta T的详细构造,包括对Beta T的一个操作的定义,然后使用这个明确的描述详细分析其代数结构。对于一般的半流,如“T - T是半群”、“T - T包含一个不变集”、“T - T包含一个幂等”等条件,以及最小幂等、最大幂等等代数概念将出现在关于半流动力学的论述中。首席研究员将研究一般半流中复发的各种概念。它们将根据它们返回到给定邻域(无限的,合成的,充满的,等等)的时间集合的大小来定义,然后根据确定它们的T元素的性质来表征。项目负责人还计划研究以下概念:点的近端对、远端点、积循环点及其与远端点的关系、Ellis半群(代理半群的另一个重要包络半群)的结构、IP集、Ramsey型定理等。首席研究员还将研究将敏感性和混沌推广到一般半流的情况。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alica Miller其他文献

New definitions of Devaney's chaos
  • DOI:
    10.1016/j.topol.2022.108321
  • 发表时间:
    2022-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alica Miller
  • 通讯作者:
    Alica Miller
Unpredictable points and stronger versions of Ruelle–Takens and Auslander–Yorke chaos
不可预测的点和更强版本的 Ruelle-Takens 和 Auslander-Yorke 混乱
  • DOI:
    10.1016/j.topol.2018.11.023
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Alica Miller
  • 通讯作者:
    Alica Miller
Devaney's chaos and eventual sensitivity
德瓦尼的混乱和最终的敏感性
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alica Miller
  • 通讯作者:
    Alica Miller
Weak mixing in general semiflows implies multi-sensitivity, but not thick sensitivity
A note about various types of sensitivity in general semiflows
  • DOI:
    10.4995/agt.2018.9943
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Alica Miller
  • 通讯作者:
    Alica Miller

Alica Miller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

可压缩多介质ALE框架下的MOF界面重构方法研究
  • 批准号:
    11001026
  • 批准年份:
    2010
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
多流体ALE模式下Front tracking 界面追踪法研究
  • 批准号:
    10901022
  • 批准年份:
    2009
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
可压缩多介质流动的整体ALE方法研究
  • 批准号:
    10802010
  • 批准年份:
    2008
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

DURABILITY MODELLING OF COMPOSITE STRUCTURES WITH ARBITRARY LAY-UP USING STANDARDIZED TESTING AND ARTIFICIAL INTELLIGENCE (D-STANDART)
使用标准化测试和人工智能(D-STANDART)对任意铺设的复合结构进行耐久性建模
  • 批准号:
    10048912
  • 财政年份:
    2023
  • 资助金额:
    $ 11.76万
  • 项目类别:
    EU-Funded
Improving the Speed of Galvo-Scanners
提高振镜扫描仪的速度
  • 批准号:
    10616930
  • 财政年份:
    2023
  • 资助金额:
    $ 11.76万
  • 项目类别:
Novel Computational Methods for Design Under Uncertainty with Arbitrary Dependent Probability Distributions
具有任意相关概率分布的不确定性设计的新颖计算方法
  • 批准号:
    2317172
  • 财政年份:
    2023
  • 资助金额:
    $ 11.76万
  • 项目类别:
    Standard Grant
Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持不连续伽辽金方法
  • 批准号:
    2309591
  • 财政年份:
    2023
  • 资助金额:
    $ 11.76万
  • 项目类别:
    Standard Grant
Algebraic geometry over arbitrary (in particular, non-algebraically closed) fields
任意(特别是非代数闭)域上的代数几何
  • 批准号:
    2886391
  • 财政年份:
    2023
  • 资助金额:
    $ 11.76万
  • 项目类别:
    Studentship
Development of rational evaluation method for prestressing in concrete structures with arbitrary configuration
任意构型混凝土结构预应力合理评价方法的建立
  • 批准号:
    23K03996
  • 财政年份:
    2023
  • 资助金额:
    $ 11.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Arbitrary arrangement of cells using photo-response of narrow-gap semiconductors
利用窄带隙半导体的光响应任意排列电池
  • 批准号:
    23H01715
  • 财政年份:
    2023
  • 资助金额:
    $ 11.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
DURABILITY MODELLING OF COMPOSITE STRUCTURES WITH ARBITRARY LAY-UP USING STANDARDIZED TESTING AND ARTIFICIAL INTELLIGENCE
使用标准化测试和人工智能对任意铺设的复合结构进行耐久性建模
  • 批准号:
    10063968
  • 财政年份:
    2023
  • 资助金额:
    $ 11.76万
  • 项目类别:
    EU-Funded
Study of manipulator with load compensation mechanism for arbitrary loads that can be driven by a single motor
单电机驱动任意负载的带负载补偿机构的机械手研究
  • 批准号:
    23K13300
  • 财政年份:
    2023
  • 资助金额:
    $ 11.76万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
DURABILITY MODELLING OF COMPOSITE STRUCTURES WITH ARBITRARY LAY-UP USING STANDARDIZED TESTING AND ARTIFICIAL INTELLIGENCE (D-STANDART)
使用标准化测试和人工智能(D-STANDART)对任意铺设的复合结构进行耐久性建模
  • 批准号:
    10048718
  • 财政年份:
    2023
  • 资助金额:
    $ 11.76万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了