Symplectic Cohomology, log Calabi-Yau Varieties, and equivariant Lagrangian Submanifolds

辛上同调、对数 Calabi-Yau 簇和等变拉格朗日子流形

基本信息

  • 批准号:
    1406322
  • 负责人:
  • 金额:
    $ 9.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2015-02-28
  • 项目状态:
    已结题

项目摘要

This project studies connections between different areas of geometry that are inspired by ideas from theoretical physics. An important idea in theoretical physics is the notion of a duality between physical theories. A consequence of such a duality is a deep connection between the mathematical models that describe those theories. These connections allow us to look at a mathematical question in one model from another perspective, and thus derive new results. For this project, the mathematical models come from algebraic geometry (the geometry of sets defined by polynomial equations) and representation theory (the study of symmetry) on the one hand, and symplectic geometry (the geometry of the phase spaces of classical mechanics) on the other. The duality relating them is known as homological mirror symmetry. The focus of this project is to mine this connection for new insights into structures arising on each side of the duality. One part of the project studies how symmetries arise in symplectic geometry, and how this new perspective can give insights into representation theory. Another part studies the relationship between dynamics in symplectic geometry and one of the most basic objects in algebraic geometry, namely functions. The project also supports the training of graduate and early-career mathematicians in this rapidly-developing area of research. More broadly, this project fits into the ongoing interaction between mathematics and physics that has, over the centuries, led to theoretical advances that have enabled the transformative technologies of our time.The organizing principle for this project is homological mirror symmetry for log Calabi-Yau varieties (varieties arising as the complement of an anticanonical divisor in a compactification). We consider such varieties both for the algebraic and the symplectic sides of the correspondence. On the symplectic side, the main structure we consider is symplectic cohomology, an algebraic structure that is built out of periodic orbits of certain Hamiltonian flows on a symplectic manifold (hence the connection to dynamics). The heart of the project is to relate this structure to functions and vector fields on the mirror algebraic variety. The connection to representation theory appears by considering the flag variety of a semisimple algebraic group G on the algebraic side. These are not log Calabi-Yau, but they contain open subsets which are, and part of the project is to understand better how to pass between the two situations (this involves considering a potential function on the symplectic side). The symmetries of the flag variety, namely the group G and its Lie algebra, should appear in the symplectic side as well. The natural home for the Lie algebra is symplectic cohomology, and the group action itself is manifested in the action of this Lie algebra on the Floer cohomology of equivariant Lagrangian submanifolds, which are the counterpart of equivariant vector bundles in algebraic geometry. Ultimately, one expects to obtain representations of G in the Lagrangian Floer cohomology groups. The pay-off for this effort is that these Floer cohomology groups come with a distinguished basis, and this project seeks to understand how that basis is related to the various known canonical bases in representation theory of Lusztig, Mirkovic-Vilonen, and others. In approaching these problems, the project uses ideas from the Strominger-Yau-Zaslow approach to mirror symmetry, as developed by Gross-Siebert and Gross-Hacking-Keel, as well as techniques developed by the PI in previous work on the case of log Calabi-Yau surfaces (complex dimension two).
该项目研究几何不同领域之间的联系,受到理论物理思想的启发。理论物理学中的一个重要思想是物理理论之间的对偶概念。这种对偶的结果是描述这些理论的数学模型之间的深刻联系。这些联系使我们能够从另一个角度看待一个模型中的数学问题,从而得出新的结果。对于这个项目,数学模型一方面来自代数几何(由多项式方程定义的集合的几何)和表示理论(对称性的研究),另一方面来自辛几何(经典力学相空间的几何)。它们之间的对偶关系被称为同调镜像对称。这个项目的重点是挖掘这种联系,以便对二元结构的每一面产生新的见解。该项目的一部分研究对称是如何在辛几何中产生的,以及这种新的视角如何为表征理论提供见解。另一部分研究辛几何中的动力学与代数几何中最基本的对象之一——函数之间的关系。该项目还支持在这一快速发展的研究领域培养研究生和早期职业数学家。更广泛地说,这个项目符合数学和物理之间持续的相互作用,几个世纪以来,这种相互作用导致了理论进步,使我们这个时代的变革性技术成为可能。这个项目的组织原则是对数Calabi-Yau变种(变种在紧化中作为反正则因子的补产生)的同调镜像对称。我们考虑了对应的代数边和辛边的这种变化。在辛方面,我们考虑的主要结构是辛上同调,这是一种代数结构,它是由辛流形上某些哈密顿流的周期轨道建立起来的(因此与动力学有联系)。该项目的核心是将该结构与镜像代数变量上的函数和向量场联系起来。通过考虑半简单代数群G在代数侧的标志变分,出现了与表示理论的联系。这些不是log Calabi-Yau,但它们包含开放子集,项目的一部分是更好地理解如何在两种情况之间传递(这涉及到考虑辛侧的潜在函数)。旗群G及其李代数的对称性也应出现在辛侧。李代数的自然本源是辛上同调,群作用本身表现在李代数对等价拉格朗日子流形的花上同调上的作用上,等价拉格朗日子流形是代数几何中等价向量束的对应物。最后,我们期望得到G在拉格朗日花上同调群中的表示。这一努力的回报是,这些Floer上同群都有一个独特的基,而这个项目试图理解这个基是如何与Lusztig、Mirkovic-Vilonen等人的表示理论中各种已知的规范基相关联的。为了解决这些问题,该项目使用了Gross-Siebert和Gross-Hacking-Keel开发的strominger - you - zaslow镜像对称方法的思想,以及PI在之前关于log calbi - yau曲面(复二维)的工作中开发的技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Pascaleff其他文献

The wall-crossing formula and Lagrangian mutations
穿墙公式和拉格朗日突变
  • DOI:
    10.1016/j.aim.2019.106850
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    James Pascaleff;D. Tonkonog
  • 通讯作者:
    D. Tonkonog
Topological Fukaya category and mirror symmetry for punctured surfaces
穿刺面的拓扑深谷范畴和镜像对称
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    James Pascaleff;Nicolò Sibilla
  • 通讯作者:
    Nicolò Sibilla
On the symplectic cohomology of log Calabi–Yau surfaces
关于对数的辛上同调
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    2
  • 作者:
    James Pascaleff
  • 通讯作者:
    James Pascaleff
Floer cohomology of $\mathfrak{g}$-equivariant Lagrangian branes
$mathfrak{g}$-等变拉格朗日膜的 Floer 上同调
  • DOI:
    10.1112/s0010437x1500771x
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Yankı Lekili;James Pascaleff
  • 通讯作者:
    James Pascaleff
Poisson geometry, monoidal Fukaya categories, and commutative Floer cohomology rings
泊松几何、幺半群 Fukaya 范畴和交换 Floer 上同调环
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    James Pascaleff
  • 通讯作者:
    James Pascaleff

James Pascaleff的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Pascaleff', 18)}}的其他基金

Symplectic Cohomology, log Calabi-Yau Varieties, and equivariant Lagrangian Submanifolds
辛上同调、对数 Calabi-Yau 簇和等变拉格朗日子流形
  • 批准号:
    1522670
  • 财政年份:
    2014
  • 资助金额:
    $ 9.57万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Elliptic cohomology and quantum field theory
职业:椭圆上同调和量子场论
  • 批准号:
    2340239
  • 财政年份:
    2024
  • 资助金额:
    $ 9.57万
  • 项目类别:
    Continuing Grant
Symplectic cohomology and quantum cohomology of Fano manifolds
Fano流形的辛上同调和量子上同调
  • 批准号:
    2306204
  • 财政年份:
    2023
  • 资助金额:
    $ 9.57万
  • 项目类别:
    Standard Grant
Cohomology theories for algebraic varieties
代数簇的上同调理论
  • 批准号:
    2883661
  • 财政年份:
    2023
  • 资助金额:
    $ 9.57万
  • 项目类别:
    Studentship
LEAPS-MPS: Quantum Field Theories and Elliptic Cohomology
LEAPS-MPS:量子场论和椭圆上同调
  • 批准号:
    2316646
  • 财政年份:
    2023
  • 资助金额:
    $ 9.57万
  • 项目类别:
    Standard Grant
Cohomology of arithmetic groups in GL(2) over definite quaternion algebras
GL(2) 定四元数代数上算术群的上同调
  • 批准号:
    2884658
  • 财政年份:
    2023
  • 资助金额:
    $ 9.57万
  • 项目类别:
    Studentship
Koszul duality and the singularity category for the enhanced group cohomology ring
增强群上同调环的 Koszul 对偶性和奇点范畴
  • 批准号:
    EP/W036320/1
  • 财政年份:
    2023
  • 资助金额:
    $ 9.57万
  • 项目类别:
    Research Grant
Dual complexes and weight filtrations: Applications to cohomology of moduli spaces and invariants of singularities
对偶复形和权重过滤:模空间上同调和奇点不变量的应用
  • 批准号:
    2302475
  • 财政年份:
    2023
  • 资助金额:
    $ 9.57万
  • 项目类别:
    Continuing Grant
Matrix Approximations, Stability of Groups and Cohomology Invariants
矩阵近似、群稳定性和上同调不变量
  • 批准号:
    2247334
  • 财政年份:
    2023
  • 资助金额:
    $ 9.57万
  • 项目类别:
    Standard Grant
Research on commutative rings via etale cohomology theory
基于etale上同调理论的交换环研究
  • 批准号:
    23K03077
  • 财政年份:
    2023
  • 资助金额:
    $ 9.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topological Hopf Algebras and Their cyclic cohomology
拓扑 Hopf 代数及其循环上同调
  • 批准号:
    RGPIN-2018-04039
  • 财政年份:
    2022
  • 资助金额:
    $ 9.57万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了